An Inverse Method to Measure the Flexural Wave Properties of a Beam

Abstract:

Article Preview

Info:

Periodical:

Materials Science Forum (Volumes 440-441)

Edited by:

M.P. Cartmell

Pages:

329-336

Citation:

A. J. Hull and D. A. Hurdis, "An Inverse Method to Measure the Flexural Wave Properties of a Beam", Materials Science Forum, Vols. 440-441, pp. 329-336, 2003

Online since:

November 2003

Export:

Price:

$38.00

[1] R. de Prony: Journal of Ec. Polytech Vol. 1 (1795), pp.24-76. Essai experimental et analytique.

[2] K. Grosh and E. G. Williams: J. Acous. Soc. Am., Vol. 93 (1993), pp.836-848. Complex wave-number decomposition of structural vibrations.

[3] Y. M. Ram: J. Sound Vib., Vol. 169 (1994), pp.238-252. Inverse mode problems for the discrete model of a vibrating beam.

[4] J. Linjama and T. Lahti: J. Sound Vib., Vol. 161 (1993), pp.317-331. Measurement of bending wave reflection and impedance in a beam by the structural intensity technique.

DOI: https://doi.org/10.1006/jsvi.1993.1074

[5] P. D. Bauman: J. Sound Vib., Vol. 174 (1994), pp.677-694. Measurement of structural intensity: analytic and experimental evaluation of various techniques for the case of flexural waves in one-dimensional structures.

DOI: https://doi.org/10.1006/jsvi.1994.1301

[6] B. R. Mace and C. R. Halkyard: J. Sound Vib., Vol. 230 (2000), pp.561-589. Time domain estimation of response and intensity in beams using wave decomposition and reconstruction.

DOI: https://doi.org/10.1006/jsvi.1999.2630

[7] L. L. Koss and D. Karczub: J. Sound Vib., Vol. 184 (1995), pp.229-244. Beam bending wave solution predictions of dynamic strain using frequency response functions.

DOI: https://doi.org/10.1006/jsvi.1995.0314

[8] J. G. McDaniel, P. Dupont, and L. Salvino: J. Sound Vib., Vol. 231 (2000), pp.433-449. A wave approach to estimating frequency-dependent damping under transient loading.

DOI: https://doi.org/10.1006/jsvi.1999.2723

[9] J. G. McDaniel and W. S. Shepard, Jr.: J. Acous. Soc. Am, Vol. 108 (2000), pp.1674-1682. Estimation of structural wave numbers from spatially sparse response measurements.