Modelling and Simulation of Bolted Joints under Harmonic Excitation

Abstract:

Article Preview

Info:

Periodical:

Materials Science Forum (Volumes 440-441)

Edited by:

M.P. Cartmell

Pages:

421-428

Citation:

M. Oldfield et al., "Modelling and Simulation of Bolted Joints under Harmonic Excitation", Materials Science Forum, Vols. 440-441, pp. 421-428, 2003

Online since:

November 2003

Export:

Price:

$38.00

[1] C. F. Beards: Damping in structural joints. Shock Vib. Vol. 24 (1992), pp.3-7.

[2] S. -Y. Lee, K. -H. Ko and J. M. Lee: Analysis of dynamic characteristics of structural joints using stiffness influence coefficients. KSME Int. J. Vol. 14 (2000), pp.1319-1327.

DOI: https://doi.org/10.1007/bf03191916

[3] J. P. Den Hartog: Forced vibrations with combined Coulomb and viscous friction. Transactions of the American Society of Mechanical Engineers Vol. 53 (1931), pp.107-115.

[4] A. A. Ferri: Friction damping and isolation systems. J. Vib. Acoust. Vol. 117B (1995), pp.196-206.

[5] L. Gaul and R. Nitsche: The role of friction in mechanical joints. Appl. Mech. Rev. Vol. 54 (2001), pp.93-106.

DOI: https://doi.org/10.1115/1.3097294

[6] J. T. Oden and J. A. C. Martins: Models and computational methods for dynamic friction phenomena. Comput. Method. Appl. M. Vol. 52 (1985), pp.527-634.

[7] C. Canudas de Wit, H. Olsson, K. J. Åström and P. Lischinsky: A new model for control of systems with friction. IEEE T. Automat. Contr. Vol. 40 (1995), p.419425.

DOI: https://doi.org/10.1109/9.376053

[8] L. Gaul and J. Lenz: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. Vol. 125 (1997), pp.169-181.

DOI: https://doi.org/10.1007/bf01177306

[9] Y. K. Wen: Equivalent linearization for hysteretic systems under random excitation. J. Appl. Mech. -T. ASME Vol. 47 (1980), pp.150-154.

DOI: https://doi.org/10.1115/1.3153594

[10] Y. K. Wen: Method of random vibration of hysteretic systems. J. Eng. Mech. ASCE Vol. 102 (1976), pp.249-263.

[11] A. Kyprianou: Non-linear parameter estimation of dynamic models using differential evolution: Application to hysteretic systems and hydraulic engine mounts PhD Thesis, (Department of Mechanical Engineering, University of Sheffield, Sheffield 1999).

[12] Hibbit, Karlsson and Sorensen Inc.: ABAQUS User Documentation (USA 2001).

[13] J. E. Shigley: Mechanical Engineering Design (McGraw-Hill, Singapore 1986).

[14] A. F. Vakakis and D. J. Ewins: Effects of weak nonlinearities on modal analysis. In Proc. 10 th Int. Modal Analysis Conf. (1992), pp.72-78.

[15] R. Bouc: Forced vibration of mechanical systems with hysteresis. Abstract Proc. 4 th Conf. On Nonlinear Oscill. (Prague 1967), p.315.

Fetching data from Crossref.
This may take some time to load.