The Microstructure of Mechanically Alloyed Nanocrystalline Aluminium-Magnesium

Abstract:

Article Preview

The effect of the nominal Mg content and the milling time on the microstructure of mechanically alloyed Al(Mg) solid solutions is studied. The crystallite size distribution and the dislocation structure are determined by X-ray diffraction peak profile analysis. Magnesium gradually goes into solid solution during ball milling and after 3 h almost all of the Mg atoms are soluted into the Al matrix. With increasing milling time the Mg content in solid solution, the dislocation density as well as the hardness are increasing, whereas the crystallite size is decreasing. A similar tendency of these parameters is observed at a particular duration of ball milling with increasing of the nominal Mg content. At the same time for a long milling period the dislocation density slightly decreases together with a slight reduction of the hardness.

Info:

Periodical:

Materials Science Forum (Volumes 443-444)

Edited by:

Yvonne Andersson, Eric J. Mittemeijer and Udo Welzel

Pages:

103-106

Citation:

J. Gubicza et al., "The Microstructure of Mechanically Alloyed Nanocrystalline Aluminium-Magnesium", Materials Science Forum, Vols. 443-444, pp. 103-106, 2004

Online since:

January 2004

Export:

Price:

$38.00

[1] L. Lu and Y. F. Zhang: J. Alloys and Compounds Vol. 290 (1999) p.279.

[2] J. -H. Ahn and Y. -K. Paek: J. Mater. Sci. Letters Vol. 18 (1999) p.17.

[3] J. I. Langford, D. Louer and P. Scardi: J. Appl. Cryst. Vol. 33 (2000) p.964.

[4] C. E. Krill and R. Birringer: Phil. Mag. A Vol. 77 (1998) p.621.

[5] M. Rand, J. I. Langford and J. S. Abell: Phil. Mag. B Vol. 68 (1993) p.17.

[6] A. J. C. Wilson: X-ray Optics (Methuen, London 1962).

[7] J. Gubicza, J. Szépvölgyi, I. Mohai, L. Zsoldos and T. Ungár: Mat. Sci. Eng. A Vol. 280 (2000) p.263.

[8] M. A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York 1996).

[9] M. Wilkens: Phys. Stat. Sol. (a) Vol. 2 (1970) p.359.

[10] M. Wilkens: Fundamental Aspects of Dislocation Theory ed. J. A. Simmons, R. de Wit, R. Bullough, Vol. II. Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC. USA (1970) p.1195.

[11] P. Klimanek and Jr R. Kuzel: J. Appl. Cryst. Vol. 21 (1988) p.59.

[12] T. Ungár and A. Borbély: Appl. Phys. Lett. Vol. 69 (1996) p.3173.

[13] P. Scardi and M. Leoni: J. Appl. Cryst. Vol. 32 (1999) p.671.

[14] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. Vol. 34 (2001) p.298.

[15] G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Cryst. Vol. 34 (2001) p.669.

[16] A. R. Stokes: Proc. Phys. Soc. London Vol. 61 (1948) p.382.

[17] D. M. Pool & H. J. Axon: J. Inst. Met. Vol. 80 (1952) p.599.

[18] I. Kovács, J. Lendvai and E. Nagy: Acta Met. Vol. 20 (1972) p.975.

[19] T. Ungár, I. Dragomir, Á. Révész and A. Borbély: J. Appl. Cryst. Vol. 32 (1999) p.992.