Small Angle X-Ray Scattering with Cobalt Radiation for Nanostructure Characterization of Fe-Based Specimen


Article Preview

A laboratory system (NanoSTAR) based on a combination of specially designed X-ray multilayer optics (Göbel Mirrors) with optical bench, pinhole collimators, sample changer and primary beam stop as well as a two dimensional multiwire detector (HI-STAR) was equipped with a sealed cobalt X-ray tube. This solution was chosen because the CoKα has a wavelength close to that of copper but allows to overcome the problem of excessive fluorescence in Fe-samples. Various measurements were performed using this configuration of the NanoSTAR to demonstrate the performance of SAXS using cobalt radiation. A comparison is given to the primary beam intensity of the NanoSTAR with Co radiation with respect to the Cu radiation. Examples for the use of the Co radiation are given by investigating the coarsening behavior of precipitates in several Fe-based alloys. The change in size and shape of these precipitates under different heat treatment conditions are characterized.



Materials Science Forum (Volumes 443-444)

Edited by:

Yvonne Andersson, Eric J. Mittemeijer and Udo Welzel




K. Erlacher et al., "Small Angle X-Ray Scattering with Cobalt Radiation for Nanostructure Characterization of Fe-Based Specimen", Materials Science Forum, Vols. 443-444, pp. 155-158, 2004

Online since:

January 2004




[1] A. Guinier, G. Fournet, Small-Angle Scattering of X-rays, John Wiley, New York, (1955).

[2] O. Glatter, O. Kratky, editors: Small Angle X-ray Scattering, Academic Press, London, (1982).

[3] L.A. Feigin, D.I. Svergun, Strucure Analysis by Small-Angle X-ray and Neutron Scattering, Plenum Press, New York, (1987).

[4] H. Brumberger, editor: Modern Aspects of Small-Angle Scattering, NATO ASI Series C 451, Kluwer Academic, (1995).

[5] G. Kostorz, J. Appl. Cryst., 24 (1991), 444-456.

[6] G. Kostorz in Physical Metallurgy, ed. R.W. Cahn and P. Haasen, Elsevier London, (1996), 1161-1199.

[7] C. Servant, N. Bouzid and O. Lyon, Phil. Mag. A, 56 (1987), 565-582.

[8] C. Servant, N. Bouzid, Acta metal., 36 (1988), 2771-2778.

[9] N. Bouzid, C. Servant and O. Lyon, Phil. Mag. B, 57 (1988) 343-359.

[10] R. Tewari, S. Mazumder, I. S. Batra, G. K. Dey and S. Banerjee, Acta mater. 48 (2000), 1187-1200.

[11] C.H. Shek, Phys. Stat. Sol. A 186 (2001) R7-9.

[12] G. Albertini, M. Ceretti, R. Coppola, F. Fiori, P. Gondi and R. Montanari, Physica B 213-214 (1995), 812-814.

[13] M. Große, F. Eichhorn, J. Böhmert, G. Brauer, H. -G. Haubold and G. Goerigk, Nucl. Instr. and Meth. in Phys. Res. B 97 (1995), 487-490.

[14] G. Albertini, F. Carsughi, M. Ceretti, R. Coppola, F. Fiori, A. Möslang and F. Rustichelli, Appl. Radiat. Isot. 46 (1995), 729-730.

[15] M. Ceretti, R. Coppola, F. Fiori and M. Magnani, Physica B 234-236 (1997), 999-1002.

[16] G. Albertini, F. Carsughi, R. Coppola, F. Fiori, F. Rustichelli and M. Stefanon, J. Nucl. Mater. 233-237 (1996), 253-257.


[17] M. H. Mathon, G. Geoffroy, Y. de Carlan, A. Alamo and C. H. de Novion, Physica B 276-278 (2000), 939-940.


[18] R. Coppola, K. Ehrlich, M. Magnani, E. Materna-Morris and M. Valli, J. Nucl. Mater. 258-263 (1998), 1291-1294.


[19] R. Coppola, F. Fiori and E. A. Little, M. Magnani, J. Nucl. Mater. 245 (1997), 131-137.

[20] R. Coppola, R. Kampmann, M. Magnani and P. Staron, Acta mater. 46 (1998), 5447-5456.

[21] J. Härle, P. Lamparter, and S. Steeb, J. de Phys. IV 3 (1993) 307-310.

[22] M. Schuster, H. Göbel, J. Phys. D Appl. Phys. 28 (1995), 270-275.

[23] T. C. Huang, H. Toraya, T. N. Blanton and Y. Wu, J. Appl. Cryst., 26 (1993), 180-184.