XRD Study of the Nacrite/CsCl/H2O Intercalation Complex

Abstract:

Article Preview

The intercalation complex of nacrite with an alkali halide (Caesium chloride: CsCl) has been successfully prepared by mixing a CsCl saturated solution with a 8.4Å-hydrated nacrite. The homogeneous nacrite/CsCl complex has been studied by X-ray diffraction (XRD). Using an oriented clay aggregate, 10 basal reflections were obtained. The XRD pattern showed basal spacing of 10.5Å with integral series of 00l reflections indicating an ordered stacking of parallel 1:1 layers. A direct method involving a monodimensional electron density projection, along the normal to the layers, is used to determine the number and the position of intercalated compounds. The best agreement between observed and simulated p(Z) (R = 5%) is obtained by placing one Cl- ion at Z=6.7Å; one Cs+ ion at Z=8.3Å and two H O molecules at 6.3 and 7.4Å.

Info:

Periodical:

Materials Science Forum (Volumes 443-444)

Edited by:

Yvonne Andersson, Eric J. Mittemeijer and Udo Welzel

Pages:

59-64

Citation:

S. Naamen et al., "XRD Study of the Nacrite/CsCl/H2O Intercalation Complex", Materials Science Forum, Vols. 443-444, pp. 59-64, 2004

Online since:

January 2004

Export:

Price:

$38.00

[1] Range, K. J. and Weiss, A. (1969). Ber. Dtsch. Keram. Ges. 46, 629-634.

[2] Wada, K. (1965). Am. Miner. 50, 924-941.

[3] Lagaly, G. (1984). Clay Organics reactions. Phil. Trans. R. Soc. Lond. A311, 315-332.

[4] MacEwan, D. M. C. and Wilson, M. J. (1980). Crystal Structures of Clay Minerals and their X-ray Identification (G. W. Brindley & G. Brown, editors). Mineralogical Society, London.

[5] Weiss, A., Thielepape, W. and Orth, H. (1966). Proc. Int. Clay Conf., Jerusalem. 277-293.

[6] Miller, J. G. and Oulton, T. D. (1970). Clays and Clay minerals. 18, 313-323.

[7] Jackson, M. L. and Abdel-Kader, F. H. (1978). Clays and Clay minerals. 17, 157-167.

[8] Michaelian, K.H., Yariv, S. and Nasser, A., (1991a). Can. J. Chem. 69, 749-754.

[9] Michaelian, K.H., Friesen, W.I., Yariv, S. and Nasser, A., (1991b). Can. J. Chem. 69, 1786-1790.

[10] Yariv, S., Mendelovici, E. and Villalba, R. (1982). In Proceedings of the 7 th International conference of thermal Analysis, B. Miller, ed., John Wiley Sons, Chichester, 533-540.

[11] Yariv, S., Nasser, A., Deutsch, Y. and Michaelian, K.H. (1991). J. Thermal. Anal. 37, 1373-1388.

[12] Lapides, I., Lahav, N., Michaelian, K.H. and Yariv, S., (199 7). J. Thermal. Anal. 49, 1423-1432.

[13] Ben Haj Amara, A. (1997). Clay Minerals. 32, 285-292.

[14] Ben Haj Amara, A., Ben Brahim, J., Besson, G. and Pons, C H., (1995). Clay Minerals. 30, 295-306.

[15] Ben Haj Amara, A., Ben Brahim, J., Plançon, A. and Ben Rhaiem, H. (1998). Journal of Applied. Crystallography. 31, 654-662.

DOI: https://doi.org/10.1107/s0021889898000363

[16] Zheng H. and Bailey, S. W. (1994). Clays and Clay minerals. 42, 46-52.

[17] Yariv, S., Nasser, A., Michaelian, K.H., Lapides, I., Deutsch, Y. and Lahav, N. (1994). Thermochimica Acta. 234, 275-285.

DOI: https://doi.org/10.1016/0040-6031(94)85151-4

[18] Yariv, S., Lapides, I., Nasser, A., Lahav, N., Brodsky, I. and Michaelian, K.H. (2000). Clays and Clay minerals, 48, No. 1, 10-18. 10 20 30 40 50 60 70 80 90 100 010 009 008 007 006 005 004 003 002 001 I(a. u. ) °2� (Cu-K�1).

Fetching data from Crossref.
This may take some time to load.