Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis: Pore Structure, Mechanical Property and Application


Article Preview

Porous TiNi shape-memory alloy (TiNi SMA) bodies were produced from the (Ti+Ni) powder mixture by self-propagating high-temperature synthesis (SHS) method. Various processing variables such as ignition temperature and heating schedule were used to control the pore structure. Relationship between pore structure and mechanical property was also investigated. An in vivo test was performed to evaluate bone tissue response and biocompatibility of porous TiNi SMA. It showed no apparent adverse reactions such as inflammation and foreign body reaction. Bone ingrowth was found in the pore space of all implanted blocks. Introduction Titanium-nickel intermetallic compound is well known as one



Materials Science Forum (Volumes 449-452)

Edited by:

S.-G. Kang and T. Kobayashi




J. S. Kim et al., "Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis: Pore Structure, Mechanical Property and Application", Materials Science Forum, Vols. 449-452, pp. 1097-1100, 2004

Online since:

March 2004




[1] W. J. Buehler and F. J. Wang: Ocean Eng., 1 (1968) p.105–120.

[2] J. Ryhanen, E. Niemi, W. Serlo, E. Niemela, P. Sandvik, H., Pernu, and T. Salo: J. Biomed. Mater. Res., 35 (1997) p.451–457.

DOI: https://doi.org/10.1002/(sici)1097-4636(19970615)35:4<451::aid-jbm5>3.3.co;2-x

[3] L. S. Castleman, S. M. Motzkin, F. P. Alicandri, and V. L. Bonawit: J. Biomed. Mater. Res., 10 (1976) p.695–731.

[4] M. Berger-Gorbet, B. Broxup, C. Rivard, and L. H. Yahia: J. Biomed. Mater. Res., 32 (1996), p.243–248.

DOI: https://doi.org/10.1002/(sici)1097-4636(199610)32:2<243::aid-jbm14>3.0.co;2-k

[5] J. L. Putters, D. M. Kaulesar Sukul, G. R. de Zeeuw, A. Bijma, and P. A. Besselink: Eur. Surg. Res., 24 (1992) p.378–382.

DOI: https://doi.org/10.1159/000129231

[6] S. J. Simske and R. Sachdeva: J. Biomed. Mater. Res., 29 (1995) p.527–533.

[7] M. Assad, S. Lombardi, S. Berneche, E. A. Desrosiers, L. H. Yahia, and C. H. Rivard: Ann. Chir., 48 (1994) p.731–736.

[8] J. Ryhanen, M. Kallioinen, W. Serlo, P. Peramaki, J Junila, P Sandvik, E Niemela, and J. Tuukkanen: J. Biomed. Mater. Res. 15(1999) pp.472-480.

DOI: https://doi.org/10.1002/(sici)1097-4636(19991215)47:4<472::aid-jbm3>3.3.co;2-q

[9] J. Ryhanen, M. Kallioinen, J. Tuukkanen, P. Lehenkari, J. Junila, E. Niemela, P. Sandvik, and W. Serlo: Biomaterials 20(1999) pp.1309-1317.

DOI: https://doi.org/10.1016/s0142-9612(99)00032-0

[10] T. Duerig, A. Pelton and Stockel: Materials Science and Engineering 15(1999) pp.273-275.

[11] A. G. Merzhanov, in Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1997 (N. Gjot, et al, eds. ), Edizioni ETS, 1997, p.1869.

[12] J. J. Moore and H. J. Feng, in Progress in Materials Science, Vol. 39, Elsevier Science Ltd., Great Britain, 1995, p.243.

[13] J.S. Kim, S.H. Lee, J.H. Kang, V.E. Gjunter, S.B. Kang, T.H. Nam, and Y.S. Kwon, SMST2000, California, USA (2000), pp.77-85.

[14] J. S. Kim, J. H. Kang, S.G. Yang, S. H. Jung, and Y. S. Kwon, SMST-2000, J. of Korean Powder Metallurgy Institute, 10 (2003) pp.34-39.