Composition Design and Ageing of Ni-Mn-Ga Alloys


Article Preview

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMA) are a potential new class of actuator materials able to respond at higher frequencies (at least 300 Hz) with comparable strains (up to 6 %) in a moderate field (below 1 T)[1]. Magnitude of the strain depends on the values of several critical material parameters, most importantly the martensitic transformation temperature (TMart), Curie temperature (TC) and saturation magnetization (MS)[2]. It is well known that these parameters are strongly dependent on the composition of the alloy. Composition dependence of TMart, TC and MS have been experimentaly explored [3,4]. Therefore, it is possible to compile a more complete, and hence more useful composition map for designing Ni-Mn-Ga FSMAs. Ageing behavior is important in these newly developed FSMAs because ageing can affect the reliability of devices using the alloys. Ni-Mn-Ga FSMAs and Au-Cd[5] alloys have several important common characteristics, including off-stoichiometry alloy composition (designed for operation at ambient temperature) and easy twin boundary motion in the martensite state, thus similar ageing behavior is expected in Ni-Mn-Ga alloys. Ni-Mn-Ga alloys have also demonstrated strong damping due to the motion of twin boundaries[6]. Low-frequency mechanical properties are typically measured using the technique of dynamical mechanical analysis (DMA)[7]. In this paper, we present studies of composition design, subtle structure changes associated with ageing, and the temperature dependence of the low-frequency mechanical properties of several Ni-Mn-Ga single crystal alloys.



Materials Science Forum (Volumes 449-452)

Edited by:

S.-G. Kang and T. Kobayashi




X. J. Jin et al., "Composition Design and Ageing of Ni-Mn-Ga Alloys ", Materials Science Forum, Vols. 449-452, pp. 1313-1316, 2004

Online since:

March 2004




[1] C.P. Henry, J. Feuchtwanger, D. Bono, S.M. Allen and R.C. O’Handley: Proc. SPIE Conf. Vol. 4333 (2001), p.151.

[2] S.J. Murray, M. Farinelli, C. Kantner, J.K. Huang, S.M. Allen and R.C. O’Handley: J Appl. Phys. Vol. 83 (1998), p.7297.

[3] V.A. Chernenko, E. Cesari, V.V. Kokorin and I.N. Vitenko: Scripta Metallur. Mater. Vol. 33 (1995), p.1239.

[4] K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko and V.K. Lindroos: Scripta Mater. Vol. 44 (2001), p.475.


[5] X. Ren and K. Otsuka: Nature Vol. 389 (1997), p.579.

[6] J. Feuchtwanger, S. Michael, J. Goldie, D. Bono, J.K. Huang, R.C. O'Handley, S.M. Allen and A. Berkowitz: J. Appl. Phys. Vol. 93 (2003), p.8528.

[7] W. Schranz: Phase Transit. Vol. 64 (1997), p.103.

[8] X. Jin, D. Bono, R.C. O'Handley, S.M. Allen and T.Y. Hsu: J. Appl. Phys. Vol. 93 (2003), p.8360.

[9] R.C. O’Handley: J Appl. Phys. Vol. 83 (1998), p.3263.

[10] X. Jin, M. Marioni, R.C. O'Handley, S.M. Allen and T.Y. Hsu: J. Appl. Phys. Vol. 91 (2002), p.8222.

[11] S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley and T.A. Lograsso: Appl. Phys. Lett. Vol. 77 (2000), p.886.

[12] O. Heczko, L. Straka, N. Lanska, K. Ullakko and J. Enkovaara: Appl. Phys. Lett. Vol. 91 (2002), p.8228.


[13] A. Sozinov, A.A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

[14] C.B. Jiang, G. Feng and H.B. Xu: Appl. Phys. Lett. Vol. 80 (2002), p.1619.

[15] H.B. Xu, Y.Q. Ma and C.B. Jiang: Appl. Phys. Lett. Vol. 82 (2003), p.3206.

Fetching data from Crossref.
This may take some time to load.