Properties Evaluation of Composites Including Cracked Ellipsoidal Inhomogeneity


Article Preview

In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Axisymmetric finite element analysis has been carried out on intact and cracked ellipsoidal nhomogeneities in an infinite body under uniaxial tension. For the intact inhomogeneity, as well known as Eshelby’s solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix [1-3]. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking amage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity than one with low aspect ratio.



Materials Science Forum (Volumes 449-452)

Edited by:

S.-G. Kang and T. Kobayashi




B. J. Lee et al., "Properties Evaluation of Composites Including Cracked Ellipsoidal Inhomogeneity", Materials Science Forum, Vols. 449-452, pp. 85-88, 2004

Online since:

March 2004




[1] J. D. Eshelby, Proceedings of the Royal Society, London, Vol. A241 (1957), p.376.

[2] T. Mori, and K. Tanaka, Acta Metall., Vol. 21 (1973), p.571.

[3] T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, The Hague (1982).