Recrystallization in 304 Austenitic Stainless Steel


Article Preview

A 304 austenitic stainless steel was deformed using hot torsion to study the evolution of dynamic recrystallization (DRX). The initial nucleation of dynamically recrystallization occurred by the bulging of pre-existing high angle grain boundaries at a strain much lower than the peak strain. At the peak stress, only a low fraction of the prior grain boundaries were covered with new DRX grains. Beyond the peak stress, new DRX grains formed layers near the initial DRX and a necklace structure was developed. Several different mechanisms appeared to be operative in the formation of new high angle boundaries and grains. The recrystallization behaviour after deformation showed a classic transition from strain dependent to strain independent softening. This occurred at a strain beyond the peak, where the fraction of dynamic recrystallization was only 50%.



Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot




A. Dehghan-Manshadi et al., "Recrystallization in 304 Austenitic Stainless Steel", Materials Science Forum, Vols. 467-470, pp. 1163-1168, 2004

Online since:

October 2004




[1] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena (Pergamon, England 1996).

[2] B. Derby and M.F. Ashby: Scripta Metall. Vol. 21 (1987), P. 879.

[3] T. Maki, S. Okagushi and I. Tamura: 7th International Conference on the Strength of Metals and Alloys (ICMA 7), Canada (1985), P. 923.

[4] T. Sakai and J.J. Jonas: Acta Metall. Vol. 32 (1984), P. 189.

[5] W. Roberts and B. Ahlblom: Acta Metall. Vol. 26 (1978), P. 801.

[6] A. Belyakov, H. Miura and T. Sakai: Mater. Sci. Eng. Vol. A255 (1998), P. 139.

[7] E. Brunger, X. Wang and G. Gottestein: Scripta Mater. Vol. 38 (1998), P. 1843.

[8] S.E. Ion, F.J. Humphreys and S.H. White: Acta Metall. Vol. 30 (1982), P. (1909).

[9] M. Ueki, S. Horie and T. Nakamura: Mater. Sci. Tech. Vol. 3 (1987), P. 329.

[10] F.J. Humphreys and H.M. Chen: Mater. Sci. Tech. Vol. 12 (1996), P. 143.

[11] K.J. Gardner and R. Grimes: Metal Sci. Vol. 13 (1979), P. 216.

[12] H.J. McQueen and S. Bergerson: Metal Sci. Vol. 6 (1972). P. 25.

[13] X. Wang, E. Brunger and G. Gottestein: Scripta Mater. Vol. 46 (2002), P. 875.

[14] D. Ponge and G. Gottestein: Acta Mater. Vol. 46 (1998), P. 69.

[15] H. Miura, T. Sakai, H. Hamaji and J.J. Jonas: Scripta Mater. Vol. 50 (2004), P. 65.

[16] T. Sakai, A. Belyakov and H. Miura: The First Joint International Conference on Recrystallization and Grain Growth, eds. G. Gottstien and D.A. Molodov (2001), P. 669.

[17] O. Sitdikov, R. Kaibyshev and T. Sakai: Mater. Sci. Forum Vol. 419-422 (2003), P. 521.

[18] P.D. Hodgson, D.C. Collinson and B. Perrett: Inter. Symp. on Physical Simulation, eds. A.G. Suzuki, T. Sakai and F. Matsuda, NRIM (1997), P. 219.

[19] P.D. Hodgson, Mathematical Modeling of Recrystallization Processes During the Hot Rolling of Steel, PhD Thesis, University of Queensland, Australia (1993).

[20] P.D. Hodgson, M.R. Barnett, H. Beladi and G.L. Kelly: International Conference on Thermomechanical Processing: Mechanics, Microstructure & Control, Edited by E.J. Palmiere, M. Mahfouf and C. Pinna, (2002), P. 170.

[21] W. Roberts, H. Boden and B. Ahlblom: Metal Sci. Vol. 13 (1979), P. 195.

[22] T. Sakai and H. Miura: Hot Workability of Steels and Light Alloys-Composites, Eds. H. J. McQueen, E. V. Konopleva and N. D. Ryan, CIM, Montreal (1996), p.161.

Fetching data from Crossref.
This may take some time to load.