Microstructure and Texture Evolution during Continuous Dynamic Recrystallization at Warm Deformation of Titanium

Abstract:

Article Preview

The microstructure and texture evolutions in pure titanium during severe plastic deformation at T=400°C were investigated. Compressive deformation of prismatic samples was sequentially applied in three orthogonal directions up to 12 steps and a strain at each step of 40%. A radical microstructure refinement (from 20 to 0.2 µm) during strain has been found. The features of the deformation structure are a high level of internal stresses, high density of dislocations, a large number of deformation induced boundaries and the presence of twins. It is shown that during strain there is a significant change in disorientation angles and axes of individual high angle grain boundaries. At the same time the total set of high angle boundaries - Misorientation Distribution Function (MDF) and texture - does not change significantly with strain. The reasons for the change in disorientation angles and axes at new deformation-induced boundaries during plastic flow are discussed.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

1211-1216

DOI:

10.4028/www.scientific.net/MSF.467-470.1211

Citation:

S.Y. Mironov et al., "Microstructure and Texture Evolution during Continuous Dynamic Recrystallization at Warm Deformation of Titanium", Materials Science Forum, Vols. 467-470, pp. 1211-1216, 2004

Online since:

October 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.