Stability of Ultra-Fine ‘Grain Structures’ Produced by Severe Deformation

Abstract:

Article Preview

Severe deformation techniques allow metallic alloys to be deformed to ultra-high plastic strains, without any geometrical change to the work piece. They thus offer potential for the cheap production of submicron grained materials, in a bulk form. After processing severely deformed materials do not have conventional, idealized, grain structures, contain significant fractions of low angle boundaries, and are often heterogeneous. Due to their high stored energy, they are unstable on annealing and in most cases can be thought of as continuously recrystallizing. However, locally discontinuous behaviors are often observed, due to the retained less mobile low angle boundaries, as well as abnormal grain growth at elevated temperatures. Monte-Carlo-Potts models have been used to show the sensitivity of the annealing behavior to the initial starting structure present after deformation. The effect of coarse (~1µm) particles and fine dispersoid particles are also discussed.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

1261-1270

Citation:

P. B. Prangnell et al., "Stability of Ultra-Fine ‘Grain Structures’ Produced by Severe Deformation", Materials Science Forum, Vols. 467-470, pp. 1261-1270, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. in Mat. Sci. Vol. 45 (2000), p.103.

[2] S. Komura, P.B. Berbon, A. Utsunomiya, M. Furukawa, Z. Horita, M. Nemto and T.G. Langdon: Hot Deformation of Al-Alloys II, ed. T.R. Bieler, L.A. Lalli, and S.R. MacEwen, TMS, (1998), p.125.

[3] J.S. Hayes, R. Kyte and P.B. Prangnell: Mat. Sci. and Tech. Vol. 16 (2000) p.1259.

[4] P.B. Prangnell, J.R. Bowen and A. Gholinia: 22 nd Riso Int. Symp. on Materials Science, Science of Metastable and Nanocrystalline Alloys, ed. Dinesen et al., Roskilde, Denmark, Sept. (2001) p.105.

[5] A. Oscarsson, H-E. Ekström and B. Hutchinson: Mat. Sci. Forum Vol. 113-115 (1993), p.177.

[6] F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia and C. Harris: Phil. Trans. R. Soc. Lond. Vol. 357A, (1999), p.1663.

[7] Y. Wang M. Chen, F. Zhou and E. Ma: Nature Vol. 419 (2002), p.912.

[8] J. Wang, M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Mat Sci Eng. Vol. A216 (1996), p.41.

[9] J. Lian, R.Z. Vailev and B. Baudelet;: Acta Metall. Mater. Vol 43 (1995), p.4165.

[10] J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon: Acta Mater. Vol. 44 (1996), p.973.

[11] D.G. Morris and M.A. Muñoz-Morris: Acta Mater. Vol. 50 (2001), p.4047.

[12] C.Y. Yu, P.L. Sun, P.W. Kao and C.P. Chang: Mat. Sci. Eng.: Vol. A366 (2003), p.310.

[13] P.J. Apps, J.R. Bowen and P.B. Prangnell: Acta Mater. Vol. 51 (2003), p.2811.

[14] P.B. Prangnell, J.S. Hayes, J.R. Bowen, P. J Apps and P.S. Bate: Acta Mater. - in press.

[15] P. B. Prangnell and J. R. Bowen: 2 nd Int. Symp. On Ultra-Fine Grained Materials, ed. Y. T Zhu, T.G. Langdon, R.S. Mishra, Sl. Semiatin, M.J. Saran and T.C. Lowe, TMS, Seattle, Feb, (2002), p.89.

[16] F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomenon. Pergamon; (1995).

[17] Y. Huang and F.J. Humphreys: Acta Mater. Vol. 48 (2000), p. (2017).

[18] P. J. Apps and P. B. Prangnell: Ultrafine Grained Materials III, Ed. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin and T.C. Lowe. TMS (2004) - in press.

[19] F.J. Humphreys: Acta Mater. Vol. 45 (1997), p.5031.

Fetching data from Crossref.
This may take some time to load.