Synchrotron Radiation Investigation of Thermal Stability and Grain-Growth in Pure and Metal-Doped Nanocrystalline TiO2


Article Preview

The crystallization and coarsening of pure and metal-doped (M: Ag, Fe, Co) TiO2 amorphous specimens were studied during in-situ synchrotron radiation diffraction experiments. The temperature and time dependence of the average grain-size of TiO2 anatase and rutile constituent phases was determined. Excess vacancies, secondary phases or solute elements cause the pinning of the grain-boundary motion, control the onset of the anataserutile transition and control the thermal stability of ultrafine microstructures in nanocrystalline TiO2 ceramics.



Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot




R. Nicula et al., "Synchrotron Radiation Investigation of Thermal Stability and Grain-Growth in Pure and Metal-Doped Nanocrystalline TiO2", Materials Science Forum, Vols. 467-470, pp. 1307-1312, 2004

Online since:

October 2004




[1] R. Birringer, H. Gleiter, H.P. Klein, P. Marquardt: Phys. Lett. A 102 (1984), p.365.

[2] H. Gleiter: Nanostruct. Mater. 6 (1995), p.3; Acta Mater. 48 (2000), p.1.

[3] M. Nastasi, D.M. Parkin, H. Gleiter: Mechanical Properties and Deformation Behavior of Materials Having UltraFine Microstructures (Kluwer Acad. Publ., Dordrecht, The Netherlands, 1993).


[4] A.S. Edelstein, R.C. Cammarata: Nanomaterials : Synthesis, Properties and Applications (IoP Publ., Bristol, 1996).

[5] T.R. Malow, C.C. Koch: Acta Mater. 45/5 (1997), p.2177.

[6] S. -C. Liao, W.E. Mayo, K.D. Pae: Acta Mater. 45/10 (1997), p.4027.

[7] H.G. Kim, K.T. Kim: Acta Mater. 47 (1999), p.3561.

[8] J. Karch, R. Birringer, H. Gleiter: Nature 330 (1987), p.556.

[9] H. Natter, M. Schmelzer, M. -S. Löffler, C.E. Krill, A. Fitch, R. Hempelmann: J. Phys. Chem. B 104 (2000), p.2467.

[10] H. Natter, M. -S. Löffler, C.E. Krill, R. Hempelmann: Scr. mater 44 (2001), p.2321.

[11] M. Stir, T. Traykova, R. Nicula, E. Burkel, C. Bähtz, M. Knapp, C. Lathe: Nucl. Instrum. Meth. B 199 (2003), p.59.

[12] R. Nicula, M. Stir, C. Schick, E. Burkel: Thermochimica Acta 403 (2003), p.129.

[13] N.C. Halder, C.N.J. Wagner, Halder: Acta Cryst. 20 (1966), p.312.

[14] J.I. Langford, R. Delhez, Th.H. de Keijser, E.J. Mittemeijer: Austr. J. Phys. 41 (1988), pp.213-227.

[15] C.E. Krill, R. Birringer: Phil. Mag. A 77 (1998), pp.621-640.

[16] Th.H. de Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels: J. Appl. Cryst. 15 (1982), pp.308-314.

[17] D. Balzar: Documentation for program BREADTH (1997).

[18] M. Stir: Ph.D. Thesis, Rostock University, 2004 (submitted).

[19] R.D. Shannon, J.A. Pask: J. Amer. Ceram. Soc. 48 (1965), p.391.

[20] P.P. Lottici, D. Bersani, M. Braghini, A. Montenero: J. Mater. Sci. 28 (1993), p.177.

[21] H. Zhang, J.F. Banfield: J. Phys. Chem. 104 (2000), pp.3481-3487.

[22] C.S. Smith: Trans. Metall. Soc. AIME 175 (1948), p.15.

[23] J.E. Burke, D. Turnbull: Prog. Metal Phys. 3 (1952), p.220.

[24] A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu: Acta Mater. 47 (1999), pp.2143-2152.

[25] Y. Estrin, G. Gottstein, L.S. Shvindlermann et al: Scr. mater. 41 (1999), p.385; 47 (1999), p.3541; 43 (2000), p.141.

[26] C.E. Krill III, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Birringer: Phys. Rev. Lett. 86 (2001), p.842.