Grain Growth and Texture Development in Nanostructured Invar Alloy


Article Preview

In the present work, a nanocrystalline Invar alloy (Fe-36wt%Ni) foil was fabricated by using a continuous electroforming method. This material exhibited outstanding mechanical properties and a relatively low thermal expansion coefficient as compared to conventional Invar alloys. The as-deposited texture was of fibre-type characterized by strong <100>//ND and weak <111>//ND components. Grain growth occurred during annealing beyond 350°C and resulted in such texture change that the <111>//ND fibre texture strongly developed with the minor <100>//ND components. It was clarified using orientation imaging microscopy that abnormal growth of the <111>//ND grains in the early stages of grain growth plays an important role on the texture evolution. The mechanism of the abnormal grain growth has been discussed in terms of the orientation dependence of energy density.



Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot




J. K. Kim et al., "Grain Growth and Texture Development in Nanostructured Invar Alloy", Materials Science Forum, Vols. 467-470, pp. 1313-1318, 2004

Online since:

October 2004




[1] C.E. Guillaume: Proc. Phys. Soc. Vol. 32 (1920), p.374.

[2] D.G. Rancourt: Physics in Canada Vol. 45 (1989), p.3.

[3] S.G. Steinemann: J. Mag. Mag. Mat. Vol. 7 (1978), p.84.

[4] S. Chikazumi: J. Mag. Mag. Mat. Vol. 10 (1979), p.113.

[5] D.G. Rancourt, S. Chehab and G. Lamarche: J. Mag. Mag. Mat. Vol. 78 (1989), p.129.

[6] Metals Handbook 9th ed. Vol. 3 (American Society for Metals, 1980), p.792.

[7] G. Palumbo, S.J. Thorpe and K. Aust: Scripta Metall. Mater. Vol. 24 (1990), p.1347.

[8] H. Gleiter: Progress in Materials Science Vol. 33 (1989), p.223.

[9] C. Suryanarayana: Int. Mater. Rev. Vol. 40 (1995), p.41.

[10] U. Erb, G. Palumbo, D. Jeong, S. Kim and K.T. Aust: Processing and Properties of Structural Nanomaterials (TMS, U.S.A. 2003), p.109.

[11] U. Erb: Nanostruct. Mater. Vol. 6 (1995), p.533.

[12] Y.B. Park, S. -H. Hong, C.S. Ha, H.Y. Lee and T.H. Yim: Mater. Sci. Forum Vol. 408-412 (2002), p.931.

[13] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, (Elsevier Science Ltd., UK 1995), p.281.

[14] Y.B. Park: Korean Patent No. 10-2003-0026108 (2003).

[15] B.D. Cullity: Elements of X-Ray Diffraction (Addison-Wesley Pub., U.S.A. 1978), p.102.

[16] H. Li, F. Czerwinski and J.A. Szpunar: Nanostruct. Mater. Vol. 9 (1997), p.673.

[17] Y.B. Park, J. Park, C.S. Ha and T.H. Yim: Mater. Sci. Forum Vol. 408-412 (2002), p.919.

[18] W.B. Hutchinson and E. Nes: Grain Growth in Polycrystalline Materials (Trans Tech Publications, Switzerland 1992), p.385.

[19] J. Harase and R. Shimazu: Trans. JIM Vol. 29 (1988) p.388.

[20] J. Greiser, P. Müllner and E. Arzt: Acta mater. Vol. 49 (2001), p.1041.

[21] T.H. Yim, D. Raabe and Y.B. Park: Proc. 11th ICOTOM, Xi'an (1996) p.1076.