Self-Annealing Textures of Copper Damascene Interconnects

Abstract:

Article Preview

The properties of deposited metal films and interconnect structures at submicrometer scale are sensitive functions of microstructural features. Therefore, understanding of the factors which control microstructural evolution is necessary for the development and design of reliable, manufacturable interconnect structures, especially in copper damascene interconnects. The annealing textures of copper interconnects depend on their deposition textures and geometries. The copper interconnects are subjected to stresses even at room temperature, which in turn give rise to strain energies. The stress distributions in interconnects are not homogeneous, which in turn give rise to non-fiber type textures after annealing. The self-annealing textures of interconnects is discussed based on the strain-energy release maximization model, in which grains whose Young’s modulus direction is parallel to the absolute, maximum stress direction grow in preference to others.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

1333-1338

Citation:

D. N. Lee and H. J. Lee, "Self-Annealing Textures of Copper Damascene Interconnects", Materials Science Forum, Vols. 467-470, pp. 1333-1338, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] C. Ryu: Microstructure and Reliability of Copper Interconnects, Ph. D. dissertation, Stanford University, June (1998).

[2] D.P. Field, D. Dornisch and H.H. Tong: Script. Mater. Vol. 45 (2001), p.1069.

[3] D.N. Lee and H.J. Lee: J. Electron. Mater. Vol. 32 (2003), p.1012.

[4] A. Gangulee: J. Appl. Phys. Vol. 43 (1972), p.867.

[5] K. -W. Kwon, C. Ryu, R. Sinclair and S.S. Wong: Appl. Phys. Lett. Vol. 71 (1997), p.3069.

[6] C. Lingk, M.E. Gross and W.L. Brown: Appl. Phys. Lett. Vol. 74 (1999), p.682.

[7] D.P. Field, J.E. Sanches Jr., P.R. Besser and D.J. Dingley: J. Appl. Phys. Vol. 82 (1997), p.2383.

[8] L. Vanasupa, Y. -C. Joo, P.R. Besser and S. Pramanick: J. Appl. Phys. Vol. 85 (1999), p.2583.

[9] D. -I. Kim, J. -M. Paik, Y. -C. Joo, K.H. Oh and H. -C. Lee, K. Dicks: Mater. Sci. Forum Vol. 408412 (2002), p.535.

[10] V. Randle and O. Engler: Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping (Gordon and Breach Science Publishers, The Netherlands 2000).

DOI: https://doi.org/10.1201/9781420063660

[11] D.N. Lee: Scripta Metall. Mater. Vol. 32 (1995), p.1689.

[12] D.N. Lee: Metall. Mater. Int. Vol. 5 (1999), p.410.

[13] D.N. Lee: Int. J. Mech. Sci. Vol. 42 (2000), p.1645.

[14] D.N. Lee: Mater. Sci. Forum Vol. 408-412 (2002), p.75.

[15] C. Lingk and M.E. Gross: J. Appl. Phys. Vol. 84 (1998), p.5547.

[16] S.H. Brongersma, E. Kerr, I. Vervoort and K. Maex: Proc. IEEE Int. Interconnect Technology Conf., (2001), p.230.

[17] K. Ueno, T. Ritzdorf and S. Grace: J. Appl. Phy. Vol. 86 (1999), p.4930.

[18] S. Lagrange et al.: Microelectronic Engineering Vol. 50 (2000), p.449.

[19] W.H. Yeh et al.: Microelectronics Journal Vol. 32 (2001), p.579.

[20] S. -H. Rhee, Y. Du and P.S. Ho: J. Appl. Phys. Vol. 93 (2003), p.3926.

Fetching data from Crossref.
This may take some time to load.