Static Recrystallization of Ti-IF Steel after Warm Deformation


Article Preview

The present work examines the effect of strain and Zener Hollomon parameter, Z, on deformation and recrystallization of Ti-IF steel deformed in the warm temperature region. Torsion tests were performed at temperatures of 765oC and 850oC and strain rates of 0.003s-1 and 1s-1. For some conditions, an annealing treatment at the temperature of deformation was carried out using a fluidized bed furnace. Electron Back Scatter Diffraction (EBSD) maps were implemented to study the microstructure evolution. At a low value of Z abnormally large grains formed during annealing. At the higher values of Z, a more classical recrystallization reaction occurred during annealing. The latter is more desirable in most commercial applications.



Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot




R. Ebrahimi et al., "Static Recrystallization of Ti-IF Steel after Warm Deformation", Materials Science Forum, Vols. 467-470, pp. 251-256, 2004

Online since:

October 2004




[1] G. Glover and C.M. Sellars, Metall. Trans., Vol. 3, (1972), p.2271.

[2] Weiping Ye, Rene Le Gall, and Guy Saindrenan, Mater. Sci. and Eng. A, Vol. 332, (2002), p.41.

[3] I. Samajdar, B. Verlinden, P. Van Houtte and D. Vanderschueren, Scripta Materialia, Vol. 37, No. 6, (1997), p.869.


[4] L. Kestens and J.J. Jonas, ISIJ International, Vol. 37, No. 8, (1997), p.807.

[5] M. Ferry, D. Muljono and D.P. Dunne, ISIJ International, Vol. 41, No. 9, (2001), p.1053.

[6] F.H. Samuel, Mater. Sci. and Eng. A, Vol. 142, (1991), p.95.

[7] M.R. Barnett and J.J. Jonas: ISIJ Int., 37 (1997), 706.

[8] R.W. Cahn, Physical Metallurgy, (North-Holland, Amsterdam, 1970), Ch. 19.

[9] E. Woldt and D. Juul Jensen, Metall. and Mater. Trans. A, Vol. 26, (1995), p.1717.

[10] A. Oudin, M.R. Barnett and P.D. Hodgson, Mater. Sci. Forum, Vols. 426-432, 2003, p.1279.

[11] P.D. Hodgson, D.C. Collinson and B. Perett, Proc. of the 7th International Symposium on Physical Simulation, Tsukuba, Japan, (1997), p.219.

[12] I. Ochiai, H. Ohba and A. Kawana, Wire Journal Int. (1994), p.74.

[13] P. Cizek and B.P. Wynne, Mater. Sci. and Eng. A, Vol. 230, (1997), p.88.

[14] G. Glover and C.M. Sellars, Metall. Trans., Vol. 4, (1973), p.765.

[15] M.R. Barnett, G.L. Kelly, and P.D. Hodgson, Metall. and Mater. Trans. A, Vol. 33, (2002), p.1893.

[16] A. Najafizadeh, J.J. Jonas and S. Yue, Met. Trans. A, Vol. 23, (1992), p.2607.

[17] T. Hasegawa and U.F. Kocks, Act Metallurgica, Vol. 27, (1979), p.1705.

[18] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E. Kassner (editor), W.E. King, T.R. McNelley, H.J. Mc Queen and A.D. Rollett, Mater. Sci. Eng., Vol. 238, (1998), p.219.


[19] R.A. Petkovic, M.J. Luton and J.J. Jonas, Acta Metall., Vol. 27, (1979), p.1633.

[20] H.J. McQueen, S. Yue, N.D. Ryan and E. Fry, Journal of Mater. Proc. Tech., Vol. 53, (1995), p.293.

[21] H.J. McQueen, Metall. and Mater. Trans. A, Vol. 33, (2002), p.345.

[22] N. Tsuji, T. Shinmiya, Y. Saito and M. Muraki, ISIJ International, Vol. 38, No. 4, (1998), p.380.

[23] M.J. Luton and C.M. Sellars, Acta Metall., Vol. 17, (1969), p.1033.