Investigation of Subgrain Rotation Recrystallization in Dry Polycrystalline NaCl


Article Preview

NaCl is plastically anisotropic and forms a well developed substructure during deformation at 0.3-0.5Tm. EBSD was used to assess subgrain misorientations up to 0.5 true strain in dry NaCl. Equiaxed subgrains were ubiquitous but misorientations along segments of subgrain boundaries differed. Three types of subgrain boundary were identified: boundaries that surrounded equiaxed subgrains, boundaries that partly surrounded mantle subgrains, and extended subgrain boundaries, longer than the equiaxed subgrains. All of these subgrain features were recognised at low strains, <0.15. Misorientations of the majority of equiaxed subgrains were generally <2° at 0.5 strain, although segments could reach higher misorientations along kink-like boundaries. Mantle subgrains along grain boundaries tended to develop higher misorientations than in core subgrains. Long subgrain boundaries reached very high misorientations along segments of their length by 0.5 strain. Small new grains formed at triple points and more rarely within grains. Microstructures in NaCl are similar to those found in aluminium. Therefore, the dominant mechanism of high angle subgrain development at 0.5 strain and at 0.4Tm is probably an orientation splitting mechanism rather than equiaxed subgrain rotation.



Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot




G.M. Pennock et al., "Investigation of Subgrain Rotation Recrystallization in Dry Polycrystalline NaCl", Materials Science Forum, Vols. 467-470, pp. 597-602, 2004

Online since:

October 2004




[1] R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen and A. D. Rollett, Mat. Sci. Engin. A 238, 219 (1997).


[2] F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, first ed., Pergamon (1996).

[3] M. R. Drury and J. L. Urai, 173, 235 (1990).

[4] M. Stipp, H. Stunitz, R. Heilbronner and S. M. Schmid, J. Struct. Geol. 24, 1861 (2002).

[5] M. Guillope and J. P. Poirier, J. Geophys. Res 84, 5557 (1979).

[6] W. Skrotski, Textures of Geological Materials, Göttingen, Germany, 1994, p.167.

[7] R. C. M. W. Franssen and C. J. Spiers, Deformation Mechanisms, Rheology and Tectonics, Leeds, 1990, p.201.

[8] G. M. Pennock, M. R. Drury, P. W. Trimby and C. J. Spiers, J. Microc. (2002).

[9] D. A. Hughes, Q. Liu, D. C. Chrzan and N. Hansen, Acta Mat. 45, 105 (1997).

[10] D. P. Mika and P. R. Dawson, Acta Mat. 47, 1355 (1998).

[11] H. J. McQueen and W. Blum, Mat. Sci. Engin A 290, 95 (2000).

[12] M. R. Barnett and F. Montheillet, Acta Mat 50, 2285 (2002).

[13] C. J. Peach and C. J. Spiers, Tectonophys 256, 101 (1996).

[14] J. ter Heege, Relationship between dynamic recrytalliztion, grain size distribution and rheology, Ph. D. thesis, Utrecht University, Utrecht, (2002).

[15] P. J. Hurley and F. J. Humphreys, Acta Mat 51, 1087 (2003).

[16] L. Delannay, O. V. Mishin, D. J. Jensen and P. Van Houtte, Acta Mat 49, 2441 (2001).

[17] F. J. Humphreys and M. R. Drury, Aluminium Technology, London, 1986, p.76. 1.

[18] P. S. Bate, Proc. Trans. R. Soc. Lond. A 357, 1589 (1999).

[19] N. Hansen and D. Juul Jensen, Phil. Trans. Royal Soc. Lond 357, 1447 (1999).

[20] P. W. Trimby, M. R. Drury and C. J. Spiers, J. Struct. Geol 22, 1609 (2000).

[21] F. Heidelbach, I. Stretton, F. Langenhorst and S. Mackwell, J. Geophys. Res 108, 2154 (2003).