Secondary Recrystallization in Grain-Oriented Silicon Steel

Abstract:

Article Preview

Mechanism of Goss secondary recrystallization in grain-oriented silicon steel has been investigated by temperature gradient annealing and by in situ observation utilizing synchrotron x-ray topography. The results support the selective growth theory. Migration of Goss grains is controlled by second phase particles (inhibitor) and sharper Goss grains, which have higher frequency of CSL boundaries to the matrix, start to grow preferentially while the other matrix grains are stagnated by inhibitor. CSL boundaries are supposed to have lower grain boundary energy, thus suffer lower pinning force from the inhibitor and start to migrate at higher inhibition level. Based on this model, we have made a computer simulation and have found that this model successfully depicts the important features of secondary recrystallization; grain growth behavior of secondary grains, secondary grain size and sharpness of Goss texture.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

853-862

Citation:

Y. Ushigami et al., "Secondary Recrystallization in Grain-Oriented Silicon Steel", Materials Science Forum, Vols. 467-470, pp. 853-862, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] Y. Inokuti,C. Maeda,Y. Ito and H. Shimanaka: Proc. 6th Int. Conf. on Textures of Materials (1982), p.948.

[2] M. Matsuo,T. Sakai,M. Tanino,T. Shindo and S. Hayami: Proc. 6th Int. Conf. on Textures of Materials (1982), p.918.

[3] N.C. Pease D.W. Jones M.H.L. Wise and W.B. Hutchinson: Met. Sci. 15(1982), p.203.

[4] J. Harase and R. Shimizu: Trans. Japan Institute Met. 29(1988), p.388.

[5] N. Rouag,G. Vigna and R. Penell: Acta Metall. Mater. 38(1900), p.1101.

[6] N. Chen,S. Zaefferer,L. Lahn,K. Günter and D. Raabe: Acta Materialia 51(2003), p.1755.

[7] D.J. Srolovitz M.P. Anderson, P.S. Sahni and G.S. Grest: Acta Metall. 33 (1985), p.2233.

[8] T. Nakayama,Y. Ushigami: Proc. 7th RISO Int. Symp. Met. Mat. Sci (1986), p.463.

[9] C.V. Thompson H.J. Frost and F. Spaepen: Acta Metall. 35 (1987), p.887.

[10] J. Harase,R. Shimizu D.J. Dingley : Acta Metall. 39 (1991), p.763.

[11] P. Lin,G. Palumbo,J. Harase and K.T. Aust: Acta. Metall. 44 (1996), p.4677.

[12] B. Hutchinson and H. Homma: Proc. 3rd Int. Conf. of Grain Growth (1998), p.387.

[13] Y. Hayakawa and J.A. Szpunar: Acta Metall. 45 (1997), p.1285.

[14] N. Rajmohan J.A. Szpunar and Y. Hayakawa: Acta Metall. 47 (1999), p.2999.

[15] Y. Ushigami,T. Kubota and N. Takahashi: ISIJ International 38(1998), p.553.

[16] Y. Ushigami,T. Kubota and N. Takahashi: Texture and Microstructures 32(1999), p.137.

[17] N. Takahashi,Y. Suga and H. Kobayashi: J. Mag. Mag. Mat., 160 (1996), p.98.

[18] Y. Ushigami,F. Kurosawa,H. Masui,Y. Suga and N. Takahashi: Mater. Sci. Forum 204-206 (1996), p.593.

[19] Y. Ushigami, K. Kawakaki, T. Nakayama, Y. Suga ,J. Harase and N. Takahashi: Mater. Sci. Forum, 157-162 (1994), p.1081.

[20] Y. Ushigami,S. Nakamura,S. Takebayashi and S. Suzuki: Proc. 13th Int. Conf. on Textures of Materials (2002), p.973.

[21] S. Nakamura,Y. Ushigami,S. Takebayashi and S. Suzuki: Proc. 13th Int. Conf. on Textures of Materials (2002), p.1293.

[22] D.G. Brandon: Acta Metall. 14 (1966), p.1479.

[23] H. Kohara, T. Watanabe and S. Karashima: Phil. Mag. A44 (1981), p.1239.

[24] G. Hasson J.B. Guillot,B. Baroux and C. Goux: Phys. Stat. Sol. A2 (1970), p.551.

[25] Y. Ushigami, T. Nakayama, S. Arai and T. Kubota: to be published in Proc. 16th Soft Magnetic Materials Conference (2003).

[26] M. Hillert: Acta Metall. 13 (1965), p.227.

[27] G. Abruzzese and K. Lücke: Acta Metall. 34 (1986), p.905.

[28] T. Nakayama and Y. Ushigami : Mater. Sci. Forum 94-96 (1992), p.413.

[29] Y. Ushigami,K. Murakami and T. Kubota : Proc. 4th Int. Conf. on Recrystallization and Related Phenomena (1999), p.559.

Fetching data from Crossref.
This may take some time to load.