3D Atom Probe Analysis on Nb and Mo Segregation during Recrystallisation of α-Fe

Abstract:

Article Preview

Atomic-scale interface segregation behaviour of Nb and Mo during different stages of recrystallisation of a-Fe has been investigated using a three-dimensional atom probe (3DAP). Experimental procedures to analyse a specific region of interest in the specimens and to determine an orientation relationship between analysed contiguous grains are briefly described, and then analytical artefacts which may affect the measured solute distribution are discussed. Atom probe analysis reveals that Gibbs free energy of segregation of Nb is larger than that of Mo in a-Fe, implying that a stronger solute Nb-interface interaction can be a reason for the larger retardation effect of recrystallisation by Nb addition. The comparison of measured solute profiles at migrating recrystallisation interfaces with calculated solute profiles show that Cahn’s solute drag model gives a reasonable fit to solute profiles for migrating interfaces.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

949-956

Citation:

N. Maruyama and G. D.W. Smith, "3D Atom Probe Analysis on Nb and Mo Segregation during Recrystallisation of α-Fe", Materials Science Forum, Vols. 467-470, pp. 949-956, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] K. Lücke and K. Detert: Acta Metall. 5 (1957) 628.

[2] J.W. Cahn: Acta Metall. 10 (1962) 789.

[3] M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals Monograph and Report Series No. 33, p.231 (Institute of Metals, London, 1969).

[4] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater. 43 (1995) 3763.

[5] Z. -K. Liu and J. Ågren: in Proc. Int. Conf. On Martensite Transformations (ed. C. M. Wayman and J. Perkins), p.317, (Montrey Institute of Advanced Studies, Carmel, CA, 1993).

[6] Z. -K. Liu: Metall. Mater. Trans. A 28A (1997) 1625.

[7] M. Suehiro, Z. -K. Liu and J. Ågren: Acta Mater. 44 (1996) 4241.

[8] M. Suehiro: ISIJ Inter. 38 (1998) 547.

[9] M.K. Miller, A. Cerezo, M.G. Hetherington and G.D.W. Smith: Atom Probe Field-Ion Microscopy (Oxford University Press, 1996).

[10] D.N. Seidman, B.W. Krakauer, and D. Udler: J. Phys. Chem. Solids., 55 (1994) 1035.

[11] A. Cerezo, T.J. Godfrey, S.J. Sijbrandij, G.D.W. Smith and P.J. Warren: Rev. Sci. Instrum. 69 (1998) 49.

[12] D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo and G.D.W. Smith: Ultramicroscopy 79 (1999) 287.

DOI: https://doi.org/10.1016/s0304-3991(99)00055-8

[13] D.N. Seidman: in Materials Interfaces, Chapter 2 (eds. D. Wolf and S. Yip, Chapman & Hall, London, 1992).

[14] V. Randle: The Measurement of Grain Boundary Geometry, Chapter 2 (Institute of Physics, Bristol and Philadelphia, 1993).

[15] N. Maruyama: DPhil Thesis (University of Oxford, 2000).

[16] N. Maruyama, G.D.W. Smith, and A. Cerezo: Mater. Sci. &Eng. A353 (2003) 126.

[17] D. Blavette, P. Duval, L. Letellier, and M. Guttmann: Acta Mater. 44 (1996) 4995.

[18] D. McLean, Grain Boundaries in Metals, p.11 (Clarendon Press, Oxford, 1957).

[19] K. Oikawa: Tetsu to Hagane 68 (1982) 11.