Compositional Design of Multiphase Composite Ceramic Tool Material Based on the Thermal Shock Resistance and Its Application

Abstract:

Article Preview

Thermal shock resistance is one of the primary properties for the ceramic cutting tool materials with perspectives in high speed machining. An optimum model for the compositional design of the composite ceramic tool materials is built based on the thermal shock resistance. The thermal stress fracture resistance factor R is used to characterize the thermal shock resistance of the ceramic material. Results show that the developed (W,Ti)C/SiC/Al2O3 multiphase ceramic tool material can be expected to achieve the highest thermal shock resistance when the volume fraction of (W,Ti)C and SiC is about 15.8% and 24.8%, respectively. Thermal fracture resistance of the (W,Ti)C/SiC/Al2O3 ceramic tool material is approximately 81-88% higher than that of the pure alumina ceramic when machining the hardened carbon steel, which coincides well with the theoretical prediction from the optimum model. It suggests that the method used here is feasible for the development of ceramic tool materials with designed thermal shock resistance.

Info:

Periodical:

Materials Science Forum (Volumes 471-472)

Edited by:

Xing Ai, Jianfeng Li and Chuanzhen Huang

Pages:

21-25

DOI:

10.4028/www.scientific.net/MSF.471-472.21

Citation:

C. H. Xu et al., "Compositional Design of Multiphase Composite Ceramic Tool Material Based on the Thermal Shock Resistance and Its Application", Materials Science Forum, Vols. 471-472, pp. 21-25, 2004

Online since:

December 2004

Export:

Price:

$35.00

[1] C.H. Xu, X. Ai and C.Z. Huang: Wear Vol. 249 (2001), p.503.

[2] S. Lo Casto, E. Lo Valvo and E. Lucchini: Wear Vol. 208 (1997), p.67 Materials Science Forum Vols. ** 25.

[3] S. F. Wayne and S. T. Buljan: J. Am. Ceram. Soc. Vol. 72 (1989), p.754.

[4] J.K. Guo: J. Solid State Chem. Vol. 69 (1992), p.108.

[5] A.G. Evans: J. Am. Ceram. Soc. Vol. 73 (1990), p.187.

[6] C.H. Xu, C.Z. Huang, Z.Q. Li and X. Ai: J. Chin. Ceram. Soc. Vol. 28 (2000), p.538.

[7] W.D. Kingery: J. Am. Ceram. Soc. Vol. 38(1955), p.3.

[8] D.P.H. Hasselman: J. Am. Ceram. Soc. Vol. 46(1963), p.535.

[9] D.P.H. Hasselman: J. Am. Ceram. Soc. Vol. 52(1969), p.600.

[10] X. Ai and H. Xiao: Machining with ceramic tool materials (Mechanical Industry Press, China 1988) (in Chinese).

[11] C.H. Xu and X. Ai: Eng. Sci. Vol. 3 (2001), p.71 (in Chinese).

[12] K.H. Kerner: Proc. Phys. Soc. Vol. 69B (1956), p.808.

[13] T. Mori and K. Tanaka: Acta Metall. Vol. 21 (1973), p.571.

[14] D.W. Richerson: Modern Ceramic Engineering (Marcel Dekker Publication, USA 1982).

[15] H.D. Li and J.M. Xiao: Surface and Interface of materials (Tsinghua University Press, China 1990) (in Chinese).

In order to see related information, you need to Login.