Laser CVD Process for High Speed Deposition of YSZ Films

Abstract:

Article Preview

Thick oxide coatings have wide ranged applications such as oxidation protection, abrasives and thermal barrier coating (TBC). Yttria stabilized zirconia (YSZ) has been used for TBC in gas turbines. Generally, atmospheric plasma spray (APS) and electron-beam physical vapor deposition (EB-PVD) have been utilized in practical applications. Although chemical vapor deposition (CVD) provides high quality coatings, the deposition rate of CVD could have been too small for TBCs. We have recently developed a new laser CVD process achieving an extremely high deposition rate up to 660 ım/h for YSZ coatings on Al2O3 substrates and Ni-based super alloy substrates using Zr(dpm)4 and Y(dpm)3 precursors. An Nd:YAG laser with a high power of 250 W was introduced in a CVD chamber as a defocused beam in a diameter of 20mm covering a whole substrate surface. The YSZ coatings had a well-grown columnar structure with significant (200) orientation. Other oxides such as Y2O3, Al2O3 and TiO2 films were also prepared by laser CVD at high deposition rates around 1 mm/h.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

1213-1218

Citation:

T. Goto "Laser CVD Process for High Speed Deposition of YSZ Films", Materials Science Forum, Vols. 475-479, pp. 1213-1218, 2005

Online since:

January 2005

Authors:

Export:

Price:

$38.00

[1] D. R. Clarke and C. G. Levi : Annu. Rev. Mater. Res., Vol. 33 (2003), p.383.

[2] J. R.V. Garcia and T. Goto : Sci. Tech. Adv. Mater., Vol. 4 (2003), p.397.

[3] T. Hirai, K. Niihara and T. Goto: J. Mater. Sci., Vol. 12 (1977), p.631.

[4] R. Tu, T. Kimura and T. Goto : Mater. Trans., Vol. 43 (2002), p.2354.

[5] G. Whal, W. Nemetz, M. Giannozzi, S. Rushworth, D. Baxter, N. Archer, F. Cernuschi and N. Boyle : Trans. ASME Vol. 123, (2001), p.520.

[6] B. Préauchat and S. Drawin : Surf. Coatings Tech., Vol. 142-144 (2001), p.835.

[7] C. Duty, D. Jean and W. J. Lackey : Inter. Mater. Rev., Vol. 46 (2003), p. L316.

[8] T. Kimura and T. Goto : Mater. Trans., Vol. 44 (2003), p.421.

[9] C. F. Powell : Vapor Deposition (John Wiley, New York 1966).

[10] S. Y. Chun and N. Mizutani, Appl. Surf. Sci., Vol. 171 (2001), p.82.

[11] T. Matsuzaki, N. Okuda, K. Shinozaki, N. Mizutani and H. Funakubo, Jpn. J. Appl. Phys., Vol. 37 (1998), p.6229.

[12] K. W. Chour, J. Chen and R. Xu, Thin Solid Films, Vol. 304 (1997), p.106.

[13] Y. Akiyama, N. Imaishi, Y. S. Shin and S. C. Jung, J. Crystal Growth, Vol. 241 (2002), p.352.

[14] H. Yamane and T. Hirai, J. Crystal Growth, Vol. 94 (1989), p.880.

[15] L. P. C. Ferrao, H. K. Bowen and W. D. Kingery, Am. Ceram. Soc. Bull., Vol. 52 (1973), p.345.

[16] S. C. Hwang and H. S. Shin, J. Am. Ceram. Soc., Vol. 82 (1999), p.2913.

[17] H. Holzschuh and H. Suhr, Appl. Phys. Lett., Vol. 59 (1991), p.470.

[18] C. B. Cao, J. T. Wang, W. J. Yu, D. K. Peng and G. Y. Meng, Thin Solid Films, Vol. 249 (1994), p.163.

[19] H. B. Wang, C. R. Xia, G. Y. Meng and D. K. Peng, Mater. Lett., Vol. 44 (2000), p.23.

[20] M. Krellmann, D. Selbmann, U. Schmatz and F. Weiss, J. Alloys and Compounds, Vol. 251 (1997), p.307.

[21] J. M. Hampikian and W. B. Carter, Mater. Sci. Eng., Vol. A 267 (1999), p.7.

[22] D. Bauerle : Laser Processing and Chemistry (Springer, Berlin 2000).

[23] H. Miyazaki, T. Kimura and T. Goto : Jpn. J. Appl. Phys., Vol. 42 (2003), p. L316.

[24] T. J. Lu, C. G. Levi, H. N. G. Wadley and A. G. Evans : J. Am. Ceram. Soc., Vol. 84 (2001), p.2937.

Fetching data from Crossref.
This may take some time to load.