Martensitic Transformations of Ni54Mn25Ga21-xAlx Shape Memory Alloys


Article Preview

The non-stoichiometric NiMnGa shape memory alloy with high Ni content has been developed as promising thermo-actuated materials applied at high temperature. A substitution of Al for Ga in the Ni54Mn25Ga21 alloys is performed. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements have been carried out to study the effects of the phase transformations and microstructures of the Ni54Mn25Ga21-xAlx shape memory alloys. The results show that the martensitic transformation temperatures almost linearly decrease with the increase of Al substitution for Ga, which can be explained considering the effect of the size factor, i.e. the lattice parameter. A structural transition from a non-modulated tetragonal type to a seven-layered 14M one has been found during the increase of Al substitution for Ga.



Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie




Y. Xin et al., "Martensitic Transformations of Ni54Mn25Ga21-xAlx Shape Memory Alloys", Materials Science Forum, Vols. 475-479, pp. 1991-1994, 2005

Online since:

January 2005




[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

[2] P.J. Webster, K. R.A. Ziebeck, S.L. Town, M.S. Peak: Phil. Mag. B Vol. 49 (1984), p.295.

[3] V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko: Scripta Metall. Mater. Vol. 33 (1995), p.1239.

[4] C.B. Jiang, G. Feng, S.K. Gong and H.B. Xu,: Mater. Sci. Eng. A Vol. 342 (2003), p.231.

[5] Y.Q. Ma, C.B. Jiang, G. Feng, H.B. Xu: Scripta Mater. Vol. 48 (2003), p.365.

[6] H.B. Xu, Y.Q. Ma, C.B. Jiang: Appl. Phys. Lett. Vol. 82 (2003), p.3206.

[7] V.A. Chernenko, V. L'vov, J. Pons and E. Cesari: J. Appl. Phys. Vol. 93 (2003), p.2394.

[8] R. Kainuma, F. Gejima, Y. Sutou, I. Ohnuma and K. Ishida: Mater. Trans. JIM Vol. 41 (2000) p.943.

[9] V.A. Chernenko: Scr. Mater. Vol. 40 (1999) p.523.

[10] X. Jin, M. Marioni, D. Bono, S.M. Allen, R.C. O'Handley, T.Y. Hsu: J. Appl. Phys. Vol. 91 (2002), p.8222.

[11] V. V. Kokorin, I. A. Osipenko and T. V. Shirina: Phys. Met. Metall. Vol. 67, No. 3, 1989, 173-176.

[12] J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. Vol. 48 (2000) p.3027.

[13] R. Kainuma, H. Nakano and K. Ishida, Metall: Mater. Trans. A, Vol. 27A (1996), p.4153.