Magnetic Field-Enhanced Shape Memory Effect in Ni51.6Mn23.4Ga25 Single Crystals

Abstract:

Article Preview

We have performed the various measurements of the transformation strain with and without the different external magnetic fields on the Ni51.6Mn23.4Ga25 single crystals. A stress-free and two-way thermoelastic shape memory, with -1.15% strain (negative sign represents the shrinkage) and 6 K temperature hysteresis, has been found in the single crystal. The deformation can be enhanced up to -2.35% with a bias field 1.2 T applied along the measurement direction of the parent phase [001] crystallographic axial direction. Turning the field laterally applied to [010] and [100] directions of the parent phase, however, the strain was suppressed by the field of 1.2 T to 0.56% and –0.55%, respectively, a different deformation scene. Moreover, it is found that even the field of 1.2 T does not have a significant influence on the phase transition temperature and the temperature hysteresis, which indicates that the mechanism of field-enhanced strain in this material is the twin boundary motion.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

2005-2008

DOI:

10.4028/www.scientific.net/MSF.475-479.2005

Citation:

Y.T. Cui et al., "Magnetic Field-Enhanced Shape Memory Effect in Ni51.6Mn23.4Ga25 Single Crystals", Materials Science Forum, Vols. 475-479, pp. 2005-2008, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.