Shape Memory Behavior of NiMnGa/Epoxy Smart Composites

Abstract:

Article Preview

A new type of smart composite developed in our group was studied in terms of shape memory behavior. The smart composites were composed of NiMnGa ferromagnetic shape memory alloy particles (FSMAP) and a polymer matrix, where NiMnGa FSMAP will bring shape memory effect and the matrix polymer enhances ductility. Two kinds of NiMnGa were selected by taking the phase constitution into account (parent or martensite state at room temperature). The shape memory properties are reported in terms of transformation temperature, powder size, applied stress and heating/cooling rate. It was found that martensitic transformation temperatures of the smart composites obtained by differential scanning calorimetry (DSC) were almost equal to those of NiMnGa FSMAPs. The shape recovery of the composites was confirmed in the strain-temperature curves obtained by dynamic mechanical analysis. Clear shape change was recognized corresponding to the martensitic transformation temperatures. The shape memory properties depend on heating/cooling rate, particle size and applied stress. Lower heating/cooling rate and smaller particle size brings better shape memory properties. This is because thermal conductivity of polymer is low and the amount of defects such as pores introduced during curing decreases with decreasing particle size. The improvement of processing is needed to reduce material defects.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

2067-2070

Citation:

H. Hosoda et al., "Shape Memory Behavior of NiMnGa/Epoxy Smart Composites", Materials Science Forum, Vols. 475-479, pp. 2067-2070, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] H. Hosoda, S. Takeuchi, K. Wakashima and S. Miyazaki: Trans. MRS-J, 28 (2003) p.647.

[2] H. Hosoda, S. Takeuchi, K. Wakashima and S. Miyazaki: Trans. MRS-J., 29 (2004) in press.

[3] H. Hosoda, S. Takeuchi, T. Inamura and K. Wakashima, Science and Technology of Advanced Materials, (2004) in press.

[4] M. Taya, Y. Furuya, Y. Yamada, R. Watanabe, S. Sibata and T. Mori: Proc. Smart Materials, ed. V. K. Varadan, SPIE, 1916 (1993) p.373.

[5] K. Hamada, J. H. Lee, K. Mizuuchi, M. Taya, K. Inoue: Materials for Smart Systems II, eds. E. P George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, M. Wun-Fogle, Mat. Res. Soc. Symp. Proc. 459 (1997) p.143.

[6] J. H. Lee, K. Hamada, K. Mizuuchi, M. Taya, K. Inoue: Materials for Smart Systems II, eds. E. P George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, M. Wun-Fogle, Mat. Res. Soc. Symp. Proc. 459 (1997) p.419.

[7] M. Mizuuchi, K. Inoue, K. Yamauchi, K. Enami, M. Taya: The Third Pacific Rim Intl. Conf. On Advanced Materials and Processing (PRICM3), eds. M. A. Iman, R. DeNale, S. Hanada, Z. Zhong and D. N. Lee, TMS, 2 (1998) p. (2051).

[8] T. Kobayashi, H. Toda, T. Hashizume, Trans. MRS-J, 26 (2001) p.247.

[9] V. A. Chernenko, Scripta Mater., 40 (1999) p.523.

[10] K. Ohi, S. Isokawa, M. Ohtsuka, M. Matsumoto, K. Itagaki, Trans. MRS-J, 26 (2001) p.291.

[11] H. Hosoda, T. Sugimoto. K. Ohkubo, S. Miura, T. Mohri, S. Miyazaki: Intl. J. Applied Electromag. Mech., 12 (2000) p.9.

Fetching data from Crossref.
This may take some time to load.