Metal-Complex Hydrides for Hydrogen-Storage Application


Article Preview

Metal-complex hydrides Li3AlH6 and V-doped Li3AlH6 nanoparticles were synthesized by solid reactions of LiH and LiAlH4 in the absence and in the presence of VCl3, respectively. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer- Emmett-Teller sorption, thermogravimetry and differential thermal analysis have been used to investigate the phase composition, microstructure and surface properties. Not only the nanocrystalline Li3AlH6, but also the coexisting catalyst with “valence-transfer” state can influence the dehydrogenation kinetics. The extension of the catalytic mechanism is attractive for reversible hydrogen storage of the alanate system.



Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie




X. L. Gou et al., "Metal-Complex Hydrides for Hydrogen-Storage Application", Materials Science Forum, Vols. 475-479, pp. 2437-2440, 2005

Online since:

January 2005




[1] E. A. Sullivan, R.C. Wade: Kirk-Othmer Encycl. Chem. Technol. 12 (1980) 772.

[2] B. Bogdanović and M. Schwickardi: J. Alloys Compd. 253-254 (1997) 1.

[3] B. Bogdanović, R.A. Brand, A. Marjanovic, M. Schwickardi and J. Tolle: J. Alloys Compd. 302 (2000) 36.

[4] Jensen, C.M.; Zidan, R.; Mariels, N.; Hee, A.; Hagen, C. Int. J. Hydrogen Energy 1999, 24, 461.

[5] B. Bogdanović and M. Schwickardi: Appl. Phys. A 72 (2001) 221.

[6] J. A. Ritter, A.D. Ebner, J. Wang and R. Zidan: Materialstoday (2003) 18.

[7] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita and T. Sakai: J. Phys. Chem. B 105 (2001) 11214.

[8] J. Chen, N. Kuriyama, H.T. Takeshita and T. Sakai: Adv. Eng. Mater. 3 (2001) 695.

[9] G.E. Mülenberg: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, USA 1978).

[10] S.J. Gregg and K.S.W. Sing: Adsorption, Surface Area and Porosity (Academic Press, UK 1997).