Simulation of Structural Parameters and Superconducting Transition Temperature of MgB2 under Pressure


Article Preview

We successfully developed the potential parameters for simulation of MgB2. With these potential parameters, we calculate the lattice parameters and volume variations with pressure up to 240GPa. All these results agree well with experimental data under 40GPa and provide reasonable tendencies from 40GPa to 240GPa. By employing the McMillan expression, it is found that the lattice stiffening dominants the behavior of Tc under pressure in the scope of BCS theory. Using our calculated Grüneisen parameter G g , the simulated pressure effect on Tc accords well with experimental results. Our result shows that the Tc of MgB2 can be destroyed by high pressure.



Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie




Y. Shao et al., "Simulation of Structural Parameters and Superconducting Transition Temperature of MgB2 under Pressure", Materials Science Forum, Vols. 475-479, pp. 3319-3322, 2005

Online since:

January 2005




[1] J. Nagamatsu, et al. Nature (London) 410, 63 (2001).

[2] Ralph W.G. Wyckoff, Crystal structures (New York: Interscience Publishers, Inc., 1963-1964, 2 nd ed. ).

[3] S. Deemyad, et al. Physica C 385, 105-116 (2003).

[4] T. Tomia, et al. Jorgensen, Phys. Rev. B 64, 092505 (2001).

[5] F.S. Razavi, S.K. Bose and H. Ploczek, Physica C 366, 73-79 (2002).

[6] W.L. McMillan, Phys. Rev. B 167, 331 (1968) ; P.B. Allen and R.C. Dynes, Phys. Rev. B 12, 905 (1975).

[7] X.J. Chen, H. Zhang and H.U. Habermeier Phys. Rev. B 65, 144514 (2002).

[8] S.C. Parker and G.D. Price, in: Computer Modeling of Fluids, Polymers and Solid, eds. C.R.A. Catlow, S.C. Parker and M.P. Allen, NATO ASI Series vol. 293, 405 (1988).

[9] S.C. Parker and G.D. Price. Adv. Solid State Chem. 1, 295 (1989).

[10] P. Bordet, et al. Phys. Rev. B 64, 172502 (2001).

[11] I. Loa, et al. Phys. Rev. B 66, 134101 (2002).

[12] R. Osborn, et al. Phys. Rev. Lett 87, 017005 (2001).

[13] J.C. Slater. Introduction to Chemical Physics (McGraw-Hill, New York, 1939).

[14] M. Monteverde, et al. Science 292, 75 (2001).

[15] B. Lorenz, R.L. Meng and C.W. Chu. Phys. Rev. B 64, 012507 (2001).

[16] S. Deemyad, J.S. Schilling, J.D. Jorgensen and D.G. Hinks. Physica, C 361, 227-233 (2001).

[17] V.G. Tissen, M.V. Nefedova, N.N. Kolesnikov and M.P. Kulakov Physica C 363, 194-197 (2001).

[18] S. Deemyad, et al. Physica C 385, 105-116 (2003).