Laser Doping and Recrystallization for Amorphous Silicon Films by Plasma-Enhanced Chemical Vapor Deposition

Abstract:

Article Preview

One of the most challenging problems to develop polycrystalline silicon thin-film solar cells is the growth of crystalline silicon on foreign, low-cost and low-temperature substrates. In this paper, a laser doping technique was developed for the plasma-deposited amorphous silicon film. A process combination of recrystallization and dopant diffusion (phosphorous or boron) was achieved simultaneously by the laser annealing process. The doping precursor was synthesized by a sol-gel method and was spin-coated on the sample. After laser irradiation, the grain size of the doped polycrystalline silicon was examined to be about 0.5~1.0 µm. The concentrations of 2×1019 and 5× 1018 cm-3 with Hall mobilities of 92.6 and 37.5 cm²/V-s were achieved for the laser-diffused phosphorous- and boron-type polysilicon films, respectively.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

3791-3794

Citation:

D. S. Wuu et al., "Laser Doping and Recrystallization for Amorphous Silicon Films by Plasma-Enhanced Chemical Vapor Deposition", Materials Science Forum, Vols. 475-479, pp. 3791-3794, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] M. Cuscunà, A. Bonfiglietti, R. Carluccio, L. Mariucci, F. Mecarini, A. Pecora, M. Stanizzi, A. Valletta, and G. Fortunato, Solid-State Electron. Vol. 46 (2002), p.1351.

DOI: https://doi.org/10.1016/s0038-1101(02)00082-5

[2] H. Tomita, M. Negishi, T. Sameshima, and S. Usui, IEEE Electron Device Lett. Vol. 12 (1989), p.547.

[3] S. Fujii, Y. Fukawa, H. Takahashi, Y. Inomata, K. Okada, K. Fukui, and K. Shirasawa, Solar Energy Mater. & Solar Cells. Vol. 65 (2001), p.269.

DOI: https://doi.org/10.1016/s0927-0248(00)00102-1

[4] O. Nast, S. Brehme, S. Pritchard, A. G. Aberle, and S. R. Wenham, Solar Energy Mater. & Solar Cells. Vol. 86 (2001), p.4492.

[5] R. B. Bergmann, G. Oswald, M. Albrecht and V. Gross, Solar Energy Mater. & Solar Cells. vol. 46 (1997), p.147.

[6] K. Kitahara, K. Suga, A. Hara and K. Nakajima, Jpn. J. Appl. Phys. Vol. 35 (1996), p.1473.

[7] S. Higashi, K. Ozaki, K. Sakamoto, Y. Kano, and T. Sameshima, Jpn. J. Appl. Phys. vol. 38 (1999), p.857.

[8] K. Kitahara, A. Moritani, A. Hara, and M. Okabe, Jpn. J. Appl. Phys. vol. 38 (1999), p.1312.

[9] O. Nast and S. R. Wenham, J. Appl. Phys. vol. 88 (2000), p.124.

[10] M. S. Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys. vol. 79 (1996), p.7529.

[11] T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita, and T. Minemura, Jpn. J. Appl. Phys. vol. 32 (1993), p.4907.

[12] Z. Iqbal and S. Veprek, J. Phys. vol. 15 (1982), p.377.

Fetching data from Crossref.
This may take some time to load.