Characterization of Kinetics of Deformation-Enhanced Transformation in a Low Carbon Steel

Abstract:

Article Preview

Quantitative characterization of microstructural development during deformation enhanced transformation in a low carbon steel was investigated on a Gleeble 1500 machine. General conclusions of the features of austenite transformation kinetics during deformation-enhanced transformation were formulated. It was shown that the process of deformation-enhanced transformation can be divided into three stages according to the characteristics of transformation kinetics: The kinetics equations of two early stages fitted well in J-M-A equation. The kinetics of the first stage obeys Cahn’s site saturation mechanism, with the value of kinetics parameter n of 4. Ferrite nucleates at austenite grain boundaries and triple points during the first stage. Kinetics of the second stage doesn’t obey Cahn’s theory, with the value of kinetics parameter n of 1-1.5, corresponding to ferrite nucleation repeatedly at areas with high stored energy in front of the ferrite/austenite interface. The kinetics doesn’t obey the law of J-M-A equation any more in the final stage, and only few nucleation sites left at this moment.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

73-76

DOI:

10.4028/www.scientific.net/MSF.475-479.73

Citation:

J. J. Qi et al., "Characterization of Kinetics of Deformation-Enhanced Transformation in a Low Carbon Steel", Materials Science Forum, Vols. 475-479, pp. 73-76, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.