Metal-Assisted Chemical Etching of Multicrystalline Silicon in HF/ Na2S2O8 Produces Porous Silicon


Article Preview

A new metal-assisted chemical etching method using Na2S2O8 as an oxidant is proposed to form a porous layer on a multicrystalline silicon (mc-Si). This method does not need an external bias and enables formation of uniform porous silicon layers, more rapidly than the conventional stain etching method. A thin layer of Pd is deposited on the mc-Si surface prior to immersion in a solution of HF and Na2S2O8. The characterisations of etched layer formed by this method as a function of etching time were investigated by scanning electron microscopy, X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) and reflectance spectroscopy. It shows that the surface is porous and the etching is independent of grain orientation. In addition, reflectance measurements made with a variety of etching conditions show a lowering of the reflectance from 25 % to 6 % measured with respect to the bare as-cut substrate. However, this result can be improved by changing the experimental conditions (concentration, time, temperature, …).



Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas




T. Hadjersi et al., "Metal-Assisted Chemical Etching of Multicrystalline Silicon in HF/ Na2S2O8 Produces Porous Silicon", Materials Science Forum, Vols. 480-481, pp. 139-144, 2005

Online since:

March 2005




[1] S. Bastide, A. Albu-Yaron, S. Strehlke and C. Lévy-clément: Solar Energy Materials & Solar Cells, 57 (1999), p.399.


[2] K. Shirasawa, H. Takahashi, Y. Inomata, K. Okada, M. Takayama and H. Watanabei: Proc. 12th European Photovoltaic Energy Conference, (1994), p.757.

[3] R. Gamboa, M. Martins, J. M. Serra, J. Maia Alves, A. M. Valléra, E. A. Ponomarev and C. Lévy-clément: Proc. 2 nd World and Exhibition on Photovoltaic Energy Conversion, (1998), p.1669.

[4] A. J. Steckl, J. Xu and H. C. Mogul: Appl. Phys. Lett. 62 (1993), p.2111.

[5] Y. H. Tzeng and T. H. Lin: J. Electrochem. Soc., 133 (1986), p.1443.

[6] U. Kaiser, M. Kaiser and R. Schindler: Proc. 10th EC Photovoltaic Solar Energy Conf. (1991), p.293.

[7] G. Willeke, H. Nassbaumer, H. Bender and E. Bucher: Proc. 11 th EC Photovoltaic Solar Energy Conf. (1992), p.480.

[8] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis: J. Cryst. Growth 75 (1986), p.408.

[9] S. K. Ghandi: VLSI Fabrication Principles (Willey, New-York, 1983), pp.478-482.

[10] N. Gabouze, S. Belhousse and R. Outemzabet, Acta Physica Slovaca Vol. 53 (2003), p.207.

[11] B.L. Soppori: J. Elecrochem. Soc, vol. 131 (1984), p.667.

[12] M.J. Stocks, A.J. Carr and A.W. Blakers: Solar Energy Materials and Solar cells 40 (1996), p.33.

[13] J.J. Kelly, E.S. Kooij and D. Vanmaekelbergh: langmuir 15 (1999), p.3666.

[14] P.M.M.C. Bressers, J.W.J. Knapen, E.A. Meulenkamp and J.J. Kelly: Appl. Phys. Lett. 61 (1992), p.108.

[15] R. Memming: J. Electrochem. Soc. 116 (1969), p.785.

[16] R.B. Heimann: Crystals Growth, properties and applications, Vol. 8, edited by J. Grabmaier, Springer, Berlin (1982).

[17] A. Prasad, S. Balakrishnan, S.K. Jain and G.C. Jain: J. Electrochem. Soc. 129 (1982), p.596.

[18] Y. S. Tsuo, M. J. Heben, X. Wu, Y. Xiao, C. A. Moore, P. Verlinden and S. K. Deb, MRS Symp. Proc. 283 (1993), p.405.

[19] S. Strehlke, S. Bastide and C. Lévy-clément, Solar Energy Materials and Solar Cells 58 (1999), p.399.