A Comparative Study of Radon Retention Ability of Crystalline Apatite and Amorphous Oxide Materials


Article Preview

Comparative radon investigations of two natural materials, crystalline apatite and amorphous oxide, are presented here. The radon retention in the apatite (sedimentary apatite) is more than 70% of the total radon formed in the solid matrix. The amorphous oxide (gel hydrothermal alteration) retains only 7% of radon. The nature of the material which plays an important role in the radon diffusion is confirmed by heat treatment. The major and interesting result of this heat treatment is increasing of crystallite size. This phenomenon induces improvement on radon retention ability. To study these properties one uses a structure band calculations based on the Linear Combinations of Orbital Atomic (LCAO) method convenient numerically for the ionic systems.



Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas




F.Z. Boujrhal et al., "A Comparative Study of Radon Retention Ability of Crystalline Apatite and Amorphous Oxide Materials ", Materials Science Forum, Vols. 480-481, pp. 169-174, 2005

Online since:

March 2005




[1] Berrada, M., Choukri, A., El Khoukhi, T., 1989. U, Ra and radon emanating rates of Moroccan phosphates samples. Proceeding of International Workshop on Radon Monitoring in Radioprotection, Trieste, Italy, April 3-14, World Scientific (Singapore). Eds. L. Tommasino, G. Furlan, H.A. Khan, M. Monnin, 504-510.

[2] Berrada, M., Boujrhal, F.Z., Choukri, A., El Khoukhi, T., Iraqi, M.R., 1992. Emanation radon des phosphates sédimentaires et phosphogypses correspondants. In: Radon et Gaz Rares dans les Sciences de la Terre et de l'Environnement, Mém. Exp. Cartes Géologiques et Minières de la Belgique, 32, 322p/b, 253-258.

DOI: https://doi.org/10.7202/032509ar

[3] Berrada, M., Boujrhal, F.Z., Couchot, P., Mercier, R., Chambaudet, A., 1995. Effet de la température de cuisson sur le potentiel d'émanation et le taux de dégazage en radon de phosphates sédimentaires. In: Dubois, C. (Ed. ), Gaz Geochimestry, Science Reviews, pp.335-356.

[4] Boujrhal, F.Z., Carpena, J., Cherkaoui El Moursli, R., Chouak, A., 2001a. A study of radon retention and fission track annealing with temperature in natural apatite. Radiation Physics and Chemistry, 61, 645-647.

DOI: https://doi.org/10.1016/s0969-806x(01)00360-7

[5] Boujrhal, F.Z., Cherkaoui El Moursli, R., Chouak, A., 2001b. Contribution of the crystalline structure and the growing of the cristallites to the radon emanation in naturals minerals. Bull. de Liaison de la Société Française de Minéralogie et Cristallographie, 13(3), 62.

[6] Boujrhal, F.Z., Berrada, M., Cherkaoui El Moursli, R., 1999. Retention of radon by apatite structure: the case for sedimentary phosphate. Phosphorus Research Bull., 10, 274-282.

DOI: https://doi.org/10.3363/prb1992.10.0_274

[7] Saunders, V., Dovesi, R., Roetti, C., Causà, M., Harrison, N.M., Orlando, R., Zicovich-Wilson, C., 1998. Computer code CRYSTAL 98. Università di Torino, Torino.

[8] Hlil, E.K., Boujrhal, F.Z., Cherkaoui El Moursli, R., 27-30 aout 2002. Local modification in the crystalline and electronic structure of apatite: FAp, ClAp, BrAp and OHAp. VIIIès Journnés de la Matière Condensée, Société Française de Physique, Marseille, 461.

[9] Boujrhal, F.Z., Hlil, E.K., Cherkaoui El Moursli, R., 27-30 aout 2002. Local modification in the crystalline and electronic structure of apatite: FAp, ClAp, BrAp, in press in Physics and Chemical Radiation.

[10] Catti, M., Dovesi, R., Pavese, A., Saunders, V.R., 1991. Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study. J. Phys., Condens. Matter, 3(23), 4151- 4164.

DOI: https://doi.org/10.1088/0953-8984/3/23/004

[11] Prencipe, M., Zupan, A., Dovesi, R., Apra, E., Saunders, V.R., 1995. Ab initio study of the structural properties of LiF, NaF, KF, LiCl, NaCl, and KCl. Phys. Rev. B: Condensed Matter, 51(6), 3391-3396.

DOI: https://doi.org/10.1103/physrevb.51.3391

[12] M. Catti et al., J. Phys.: Cond. Mat. 3, 4151 (1991).

[13] M.P. Habas, R. Dovesi, A. Lichanot J. Phys. Cond. Matter 10, 6897 (1998).

[14] Hata, M; Marumo, F.; Iwai, S. I. Struture of the barium chloropatite, Acta Cristallographica B 1982 124, 1968-38.

[15] Noetzold, D.; Wulf, H.; Herzog, G. Differenzthermoanlyse der Bildung des Pentastrontiumchloridphosphats und roentnographiseche seiner Structur journal of alloys compd (1994), 215, 281-288.

DOI: https://doi.org/10.1016/0925-8388(94)90855-9

[16] Hendriks, S.B.; Jefferson, M.E.; Mosley, V.N. Zeitschrift fuer Kristallographie, . Kristallgemetrie; Kristallpysik, Kristallchimie 1932 81, 127-220.