Physico-Chemical Properties and Performance of Novel PEEK-WC Membranes Contacting Human Plasma and Proteins

Abstract:

Article Preview

The aim of this work was the exploration of a potential biocompatible membrane prepared from a modified polyetheretherketone (PEEK-WC). The physico-chemical properties of PEEK-WC were characterised by Differential Scanning Calorimetry and FT-Infrared Spectroscopy. The surface affinity of this membrane to human plasma and proteins such as albumin, fibrinogen and immunoglobulins G was evaluated and compared with that of commercial membranes. The wettability of all investigated membranes was established by water contact angle measurements. PEEK-WC membranes exhibited moderate wettability and low protein adsorption, differently from other commercial membranes such as cellulose acetate membrane. A preferential adsorption of hydrophilic proteins as albumin on the membrane surfaces was observed. Human plasma adsorption on membranes followed the same trend as individual protein solutions.

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas

Pages:

257-268

Citation:

L. De Bartolo et al., "Physico-Chemical Properties and Performance of Novel PEEK-WC Membranes Contacting Human Plasma and Proteins", Materials Science Forum, Vols. 480-481, pp. 257-268, 2005

Online since:

March 2005

Export:

Price:

$38.00

[1] L. De Bartolo and E. Drioli: Biomedical and Health Research: New Biomedical Materials - Basic and Applied Studies (P.I. Haris and D. Chapman, eds., IOS Press, Amsterdam/Berlin/Tokjo/Washington, 1998).

[2] L. De Bartolo, G. Jarosch-Von Schweder, A. Haverich and A. Bader: Biotechnol. Progress Vol. 16 (2000), p.102.

DOI: https://doi.org/10.1021/bp990128o

[3] J.M. Courtney and C.D. Forbes: Br. Med. Bull. Vol. 4 (1994), p.966.

[4] K.A. Mowery, M.H. Schoenfish, J.E. Saavedra, L.K. Keefer and M.E. Meyerhoff: Biomaterials Vol. 21 (2000), p.9.

[5] M. Shen, L. Martinson, M.S. Wagner, D.G. Castner, B.D. Ratner and T.A. Horbett: J. Biomater. Sci. Polym. Ed. Vol. 13 (2002), p.367.

[6] T. Matsuda and S. Ito: Biomaterials Vol. 15 (1994), p.417.

[7] J. Y. HO, T. Matsuura, J. P. Santerre: J. Biomater. Sci. Polymer Edn. Vol. 11(2000), p.1085.

[8] K. Kimmerle and H. Strathmann: Desalination Vol. 79 (1990), p.283.

[9] A. Gugliuzza, G. Clarizia, G. Golemme and E. Drioli: Eur. Pol. J. Vol. 38 (2002), p.235.

[10] L. De Bartolo, S. Morelli, M. Rende, A. Gordano, E. Drioli: Biomaterials Vol. 25 (2004), p.3621.

DOI: https://doi.org/10.1016/j.biomaterials.2003.10.042

[11] K.J. Liu, H.C. Zhang and T.L. Chen, Chin. Pat. CN 85, 101, 721, (1987).

[12] H.C. Zhang, T.L. Chen and Y.G. Yuan, Chin. Pat. CN 85, 108, 751, (1987).

[13] M. Oldani and G. Schock: J. Membrane Sci. Vol. 43 (1989), p.243.

[14] R.M. Silverstein, G.C. Bassler and T.C. Morril: Spectrometric identification of organic compounds, 5th ed. (Wiley, New York 1991).

[15] Surface Texture, American National Standard ANSI/ASME B46. 1, (American Society of Mechanical Engineers, New York, 1985).

[16] L. De Bartolo, S. Morelli, A. Bader and E. Drioli: J. Mater. Sci. -Mater. M. Vol. 12 (2001), p.959.

[17] L. De Bartolo, S. Morelli, A. Bader and E. Drioli: Biomaterials Vol. 23 (2002), p.2485.

[18] L. De Bartolo, A. Gugliuzza, S. Morelli, B. Cirillo, A. Gordano, E. Drioli: In press J. Mater. Sci. -Mater. M.

[19] C.J. van Oss: Interfacial Forces in Aqueous Media (Marcel Dekker, New York, 1994).

[20] B. Jansen and G. Ellinghorst: J. Biomed. Mater. Res. Vol. 18 (1984), p.655.

[21] J.H. Lee and H.B. Lee: J. Biomed. Mater. Res. Vol. 41(1998), p.304.

[22] L. De Bartolo, A. Gugliuzza, B. Cirillo, S. Morelli and E. Drioli: Mater. Res. Soc. Symp. Proc. Vol. 752 (2003), p.291.

Fetching data from Crossref.
This may take some time to load.