Electromagnetic Wave Absorption Behavior of NiZn-Ferrite Prepared via Hydrothermal Method

Abstract:

Article Preview

Ni0.5Zn0.5Fe2O4 ferrite powders were synthesized by a hydrothermal method. The nanoparticles of these materials were mixed with a thermal-plastic polyurethane (TPU)polymer in order to form a suitable composite for electromagnetic wave absorber in a frequency range from 2.0 to 15.0 GHz. The effect of particle size on the reflection loss was investigated by comparing nanosized and microsized powders. The reflection loss as a function of frequency ( f ), thickness of the absorber(d), the real and imaginary part of permittivity (ε’ /ε”) and the real and imaginary part of permeability (μ’/μ”) were obtained by calculation using the Bruggeman effective medium theory. The effect of Co2+, Cu2+, and Mg2+ on the reflection loss was also studied.

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas

Pages:

595-602

Citation:

C.-H. Peng et al., "Electromagnetic Wave Absorption Behavior of NiZn-Ferrite Prepared via Hydrothermal Method ", Materials Science Forum, Vols. 480-481, pp. 595-602, 2005

Online since:

March 2005

Export:

Price:

$38.00

[1] Y. Naito, and K. Suetake: IEEE Trans. Micro. Theo. Tech. MTT-19 (1971) p.65.

[2] G. J. Yin and S. B. Liao: IEEE. Trans. Magn. MAG-27 (1991) p.5459.

[3] B. T. Lee and H. C. Kim: Jpn. J. Appl. Phys. 35 (1996) pp.3401-3406.

[4] H. M. Musal, Jr., H. T. Hahn, and G. G. Bush: J. Appl. Phys. 63 (1988) p.3768.

[5] H.W. Wang, S. C. Kong. J. Mag. Mag. Mater. In press (2003).

[6] A.S. Albuquerque, J. D. Ardisson, and W.A.A. Macedo, J. Appl. Phys. 87 (2000) 4352.

[7] T. Tsutaoka, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Appl. Phys. 78 (1995) 3983.

[8] S.L. Pereira, H.D. Pfannes, A.A. Mendes Filho, L.C.B. de Miranda Pinto, M.A. Chincaro, Materials Research 2(1999)231-234.

DOI: https://doi.org/10.1590/s1516-14391999000300020

[9] S.B. Cho, D.H. Kang, J.H. Oh, J. Mater. Sci. 31(1996)4719-4722.

[10] O.F. Caltun, L. Spinu, and A. Stancu, IEEE. Trans. Magnet. 37 (2001) 2353-2355.

[11] M. Hisatoshi, Japanese patent No. 8012904 (1996).

Fetching data from Crossref.
This may take some time to load.