A Comparison of Quantum Correction Models for Nanoscale MOS Structures under Inversion Conditions

Abstract:

Article Preview

Quantum correction model features the correction of the inversion layer charge on different classical transport models in semiconductor device simulation. This approach has successfully been of great interest in the recent years. Considering a metal-oxide-semiconductor (MOS) structure in this paper, the Hänsch, the modified local density approximation (MLDA), the density-gradient (DG), the effective potential (EP), and our models are investigated computationally and compared systematically with the result of the Schrödinger-Poisson (SP) model. In terms of the accuracy for (1) the position of the charge concentration peak, (2) the maximum of the charge concentration, (3)the total inversion charge sheet density, and (4) the average inversion charge depth, these well-established models are examined simultaneously. The DG model requires the solution of a boundary value problem, the EP model overestimates the position of the charge concentration peak and the maximum of the charge concentration, our explicit model demonstrates good accuracy among models.

Info:

Periodical:

Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas

Pages:

603-610

Citation:

Y. Li "A Comparison of Quantum Correction Models for Nanoscale MOS Structures under Inversion Conditions ", Materials Science Forum, Vols. 480-481, pp. 603-610, 2005

Online since:

March 2005

Authors:

Export:

Price:

$38.00

[1] N. Sano, A. Hiroki, and K. Matsuzawa, IEEE Transactions on Nanotechnology Vol. 1 (2002), p.63.

[2] R. Difrenza, P. Llinares, and G. Ghibaudo, Solid-State Electronics Vol. 47 (2003), p.1161.

[3] D. Munteanu, J. -L. Autran, E. Decarre, and R. Dinescu, Journal of Non-Crystalline Solids Vol. 322 (2003), P. 206.

[4] T. Ando, A. B. Fowler, and F. Stern, Reviews of Modern Physics Vol. 54 (1982), P. 437.

[5] F. Stern and W. E. Howard, Physical Review Vol. 163 (1967), P. 816.

[6] Y. Li, T. -S. Chao, and S. M. Sze, International Journal of Modelling and Simulation Vol. 23 (2003), P. 94.

[7] Y. Li, J. -W. Lee, T. -W. Tang, T. -S. Chao, T. -F. Lei, and S. M. Sze, Computer Physics Communications Vol. 147 (2002), P. 214.

[8] W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, Solid-State Electronics Vol. 32 (1989), P. 839.

[9] G. Paasch and H. Ubensee, Physica Status Solidi (b) Vol. 113 (1982), P. 165.

[10] M.G. Ancona and H.F. Tiersten, Physical Review B Vol. 35 (1987), P. 7959.

[11] Y. Li, WSEAS Transactions on Circuits Vol. 1 (2002), P. 1.

[12] T. -W. Tang, X. Wang, and Y. Li, Journal of Computational Electronics, Vol. 1 (2002), p.389.

[13] D.K. Ferry, Superlattices and Microstructures Vol. 27 (2000), P. 61.

[14] Y. Li, T. -w. Tang, and X. Wang, IEEE Transactions on Nanotechnology Vol. 1 (2002), P. 238.

[15] T. -W. Tang and Y. Li, IEEE Transactions on Nanotechnology Vol. 1 (2002), P. 243.

[16] Y. Li, Computer Physics Communications Vol. 153 (2003) p.359.

Fetching data from Crossref.
This may take some time to load.