Site Preference Occupation of Ni and V in Fe3Al-Based Alloys


Article Preview

Nonempirical study of the site preference occupation for Ni and V substituting in Fe3Al has been carried out in the framework of the coherent potential approximation. Obtained values of total energies show in a full agreement with experiments that Ni atoms in the equilibrium configuration occupy the iron sub-lattice for alloying with 5 at % of Ni in the Fe3Al-based alloy. Calculations of alloys with the V-doped iron aluminide in the D03 phase show differences in bonding and site occupation preferences in comparison with Ni doping. V atoms occupy aluminum sublattice.



Materials Science Forum (Volumes 480-481)

Edited by:

A. Méndez-Vilas




D. Fuks et al., "Site Preference Occupation of Ni and V in Fe3Al-Based Alloys", Materials Science Forum, Vols. 480-481, pp. 81-88, 2005

Online since:

March 2005




[1] Y. Nishino, Mater. Sci. Eng. A, Vol. A258 (1998), p.50.

[2] B. V. Reddy, S. C. Deevi, A. C. Lilly, and P. J. Jena, J. Phys. Condensed Mat., Vol. 13 (2001), p.8363.

[3] B. V. Reddy, P. Jena, and S. C. Deevi, Intermetallics, Vol. 8 (2000), p.1197.

[4] I. M. Anderson, Acta Mater., Vol. 45 (1997), p.3897.

[5] C. Vailhe and D. Farkas, Mater. Sci. Eng. A, Vol. A258 (1998), p.26.

[6] G. Frommeyer, J. A. Jimenez, and C. Derder, Zeitschrift für Metallk., Vol. 90 (1999), p.930.

[7] Y. Nishino, S. Asano, and T. Ogawa, Mater. Sci. Eng. A, Vol. A234-236 (1997), p.271.

[8] P. Banerjee and R. Balasubramaniam, Scripta Mater., Vol. 38 (1998), p.1143.

[9] J. H. Schneibel, Mater. Sci. Eng. A, Vol. A258 (1998), p.181.

[10] Z. Sun, W. Yang, L. Shen, Y. Huang, B. Zhang, and J. Yang, Mater. Sci. Eng. A, Vol. A258 (1998), p.69.

[11] N. Lakshmi, K. Venugopalan, and J. Varma, Phys. Rev. B, Vol. 47 (1993), p.14054.

[12] S. M. Kim and D. G. Morris, Acta Mater. Vol. 46 (1998), p.2587.

[13] U. Prakash, R. A. Buckley, and H. Jones, Mater. Sci. Technol., Vol. 9 (1993), p.16.

[14] G. Athanassiadis, G. le Caer, J. Focht, and L. Rimlinger, Physica Status Solidi (a), Vol. 40 (1997), p.425.

[15] J. T. T. Kumaran, and C. Bansal, Solid State Commun., Vol. 74 (1990), p.1125.

[16] E. Popiel, M. Tuszynski, W. Zarek, and T. Rendecki, J. Less-Common Metals, Vol. 146 (1989), p.127.

[17] U. Prakash and G. Sauthoff, Intermetallics, Vol. 9 (2001), p.107.

[18] Y. D. Huang, W. Y. Yang, and Z. Q. Sun, Intermetallics, Vol. 9 (2001), p.119.

[19] A. V. Ruban, I. A. Abrikosov, and H. L. Skriver, Phys. Rev. B, Vol. 51 (1995), p.12958.

[20] D. Fuks, S. Dorfman, V. Liubich, and L. Kutsenko, Int. J. Quantum Chemistry, Vol. 90 (2002), p.1478.

[21] S. Dorfman, Comp. Mater. Sci., Vol. 17 (2000), p.186.

[22] S. Dorfman, J. Phys. Condensed Mat., Vol. 12 (2000), p.4175.

[23] O. K. Andersen, Phys. Rev. B, Vol. 12 (1975), p.3060; H. L. Skriver, The LMTO Method (Springer, New York 1984).

[24] S. H. Vosko, L. Wilk, and M. Nusair, Canad. J. Phys., Vol. 58 (1980), p.1200.

[25] K. Schlemper and L. K. Thomas, Phys. Rev. B, Vol. 50 (1994), p.17802.

[26] L. Cser, G. Konczos, D. L. Nagy, Yu. M. Ostanevich, and L. Pal, Proceeedings of the Conference on the Application of the Mossbauer Effect (Akandamiai Kiado, Budapest, 1971), p.419.

Fetching data from Crossref.
This may take some time to load.