Fracture Behaviour of Brittle (Glass) Matrix Composites


Article Preview

A number of examples exist that indicate the potential for increasing the toughness of brittle matrices by dispersing different reinforcements. For further development of these advanced materials the actual material response during mechanical loading under presence of flaws appears to be important. Theoretical and experimental knowledge acquired on different kinds of brittle matrix composites is summarised in the paper. These include glass matrix composites with metallic particles, alumina platelets, continuous SiC (Nicalon®) fibres, and both chopped fibres and ZrO2particles (hybrid composites). The composites were tested in as-received state but also after different forms of thermomechanical loading, e.g. thermal shock, thermal cycling in air, which were investigated according to the envisaged composites application. Chevron notch technique was mainly used for fracture toughness evaluation. Microstructural damage is explained based on identified fracture micromechanisms.



Edited by:

Jaroslav Pokluda




I. Dlouhý et al., "Fracture Behaviour of Brittle (Glass) Matrix Composites", Materials Science Forum, Vol. 482, pp. 115-122, 2005

Online since:

April 2005




[1] K. K. Chawla, Ceramic Matrix Composites, Chapman & Hall, London, (1993).

[2] T. Fett, D. Munz: In: Handbook of Adv. Ceramics, Chapt. 9, Eds. Somiya et al. (2003), p.647.

[3] A.R. Boccaccini, R.D. Rawlings: Glass. Technol., 43C (2002), p.191.

[4] A. G. Evans, M.Y. He, J.W. Hutchinson: J. Amer. Ceram. Soc. 72 (1989), p.2300.

[5] A. G. Evans: In: The Modelling of Material Behaviour, Embury & Thompson Eds. (1990), p.245.

[6] D. Munz, T. Fett: In Mechanical Prop. , Failure Behaviour, Material Selection, Springer Verlag, (1999).

[7] J. J. Brennan and K. M. Prewo: J. Mater. Sci. 17 (1982), p.2371.

[8] I. Dlouhý, M. Reinisch, AR Boccaccini, JF Knott: Fatigue Fract. Engng. Struct. 20 (1997), p.1235.

[9] B. Budiansky, J. C. Amazigo, and A. G. Evans: J. Mech. Phys. Solids 36 (1988), p.167.

[10] I. Dlouhý and A. R. Boccaccini: Scripta Mater. 44 (2001), p.531.

[11] F. F. Lange: Phil. Mag. 22 (1970), p.983.

[12] J.C. Lambropoulos: Int. J. Solids Structure 22 (1986), p.1083.

[13] J. Segurado, J. Llorca: Int. J. Solids Structures (2004), in print.

[14] M. Sakai, R. C. Bradt: International Materials Reviews, 38 (1993) 2, p.53.

[15] G. D. Quinn, P.J. Patel, I. Lloyd: J. of Res. of the Nat. Institute St. Technol., 107 (2002) 3, p.299.

[16] J. S. Ha, K. K. Chawla: Materials Science and Engineering A203 (1995), p.171.

[17] R. J. Fowell: Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 32 (1995) 1, p.57.

[18] A. R Boccaccini, V. Winkler: Composites: Part A 33 (2002), p.125.

[19] T. J. Hill, J. J. Mecholsky Jr, K. J. Anusavic: J. Am. Ceram. Soc. 83 (2000), p.545.

[20] T. Akatsu, et al.: In: Fracture Mechanics of Cer. , V. 11, Bradt et al eds., Plenum Press (1996), p.245.

[21] I. Dlouhý et al.: In: Fracture Mechanics of Cer. Kluwer Academic/Plenum Publishers, 2002, p.203.

[22] A. R. Boccaccini, J. Janczak-Rusch, I. Dlouhý: Matls Chemistry and Physics 53 (1998), p.155.

[23] A. R. Boccaccini, H. Kern, I. Dlouhy: Mat. Sci. Eng. A308 (2001) p.111.

[24] I. Dlouhý et al.: Composites Part A: Applied Science and Manufacturing, 34 (2003) 12, p.1177.

Fetching data from Crossref.
This may take some time to load.