Ductile-Brittle Behavior of Microcracks in 3D


Article Preview

Results of several parallel molecular dynamics crack simulations in bcc iron crystals with up to 128 million atoms are presented. The crack (001)[010] of Griffith type is loaded in Mode I. We observe dislocation emission and twinning near the free sample surfaces and later plastically induced crack initiation.



Edited by:

Jaroslav Pokluda




V. Pelikán et al., "Ductile-Brittle Behavior of Microcracks in 3D", Materials Science Forum, Vol. 482, pp. 131-134, 2005

Online since:

April 2005




[1] J.R. Rice: J. Mech. Phys. Vol. 40 (1992), p.239.

[2] G.E. Beltz and L.L. Fisher: Multiscale deformation and fracture in materials and structures (Boston, Kluwer 2001), p.237.

[3] A.S. Argon, G. Xu, M. Ortiz: Fracture-Instability, Dynamics, Scaling, and Ductile/Brittle Behavior (Materials Research Society, Vol. 409, Pittsburgh, 1996), p.29.

[4] M. Mullins and M.A. Dokainish: Phil. Mag. A Vol. 46 (1982), p.771.

[5] S. Kohlhoff, P. Gumbsh and H. Fishmeister: Phil. Mag. A Vol. 64 (1991), p.851.

[6] V. Shastry and D. Farkas: Modelling Simul. Mater. Sci. Vol. 4 (1996), p.473.

[7] A. Machová, G.E. Beltz and M. Chang: Modelling Simul. Mater. Sci. Eng. Vol. 7 (1999) 949.

[8] G. E. Beltz and A. Machová: Scripta Materialia Vol. 50 (2004), p.483.

[9] P.G. Marsch, W. Zielinski, H. Huang and W. Gerberich: Acta metall. mater. Vol. 40 (1992), p.2883.

[10] T. Šmida and J. Bošanský: Materials Sci. Eng. A Vol. 287 (2000), p.107.

[11] A. Machová and G.J. Ackland: Modelling Simul. Mater. Sci. Eng. Vol. 6 (1998), p.521.

[12] G.J. Ackland, D.J. Bacon, A.F. Calder and T. Harry: Phil. Mag. A Vol. 75 (1997), p.713.

[13] A. Machová: Computational Materials Science Vol. 24 (2002), p.535.

[14] S.J. Zhou, D.M. Beazley, P.S. Lomdahl, A.F. Voter and B.L. Hollian: Advances in fracture research (ICF9-Sydney, New York, Pergamon 1997), p.3085.

[15] K. Ogawa: Phil. Mag. Vol. 11 (1965), p.217.

[16] J. Pokluda and P. Šandera: Metall. Mater. 33 (1995), p.375.