Parameters Identification for GTN Model and Their Verification on 42CrMo4 Steel

Abstract:

Article Preview

The base of this paper is exact measurement of deformation and fracture material characteristics in laboratory, evaluation of these parameters and their application in models of finite element analysis modelling the fracture behaviour of components with defects. The base of the work is dealing with ductile fracture of forget steel 42CrMo4. R-curve is modelled by 3D FEM using WARP3D and Abaqus. Crack extension is simulated in sense of element extinction algorithms. Determination of micro-mechanical parameters is based on combination of tensile tests and microscopic observation. Input parameters for the next computation and simulation were received on the base of image analysis, namely fN and fo. The possibility of transferring these parameters to another specimen is discussed.

Info:

Periodical:

Edited by:

Jaroslav Pokluda

Pages:

335-338

Citation:

V. Kozák and L. Vlček , "Parameters Identification for GTN Model and Their Verification on 42CrMo4 Steel", Materials Science Forum, Vol. 482, pp. 335-338, 2005

Online since:

April 2005

Export:

Price:

$38.00

[1] W. Brocks, at. al.: report GKSS 2003/30.

[2] N. Moes, T. Belytschko: Engng. Fracture Mechanics, 69, 2002, p.813.

[3] L. E. Shilkrot, R. E. Miller, W. A. Curtin: J. of Mech. and Phys. of Solids, 2004, article in press.

[4] P.A. Klein at al.: Theretical and Appl. Fracture Mechanics, 37, 2001, p.99.

[5] D. Siegele and W. Schmidt: Compu. Structures, 17, 1983, p.697.

[6] W. Brocks, A. Eberle, S. Fricke, H. Veith: Nuclear Eng. Design, 151, 1994, p.387.

[7] A. Needleman: Int. J. Fracture, 42, 1990, p.21.

[8] B. Yang, K. Ravi-Chandar: Int. J. Fracture, 93, p.115.

[9] Y. N. Li, Z. Bazant: Int. J. Fracture, 86, 1997, p.267.

[10] A. Needleman: J. Appl. Mech, 54, 1987, p.525.

[11] W. Brocks, D. Z. Sun, A. Hoenig: Int. J. Plast., 32, 1995, p.459.

[12] W. Schmidt at al.:, Nucl. Eng. Design, 174, 1997, p.237.

[13] J. A. Lemaitre: J. Eng. Mater. Technology, 107, 1985, p.86.

[14] V. Tvergaard, A. Needleman: Acta Metal., 32, 1984, p.157.

[15] L. Vlček: Numerical 3D analysis of cracked specimens: Constraint parameters computations and stable crack growth modelling, PhD. Thesis, Brno, (2004).

[16] Hibbit, Karlsson, Sorensen, Inc.: Abaqus User's Manual, Version 6. 2, (2001).

[17] Gullerud at al.: Warp3D release 14. 1, University of Illinois, (2003).