Prediction and Control of Grain Boundary Fracture in Brittle Materials on the Basis of the Strongest-Link Theory


Article Preview

This paper discusses micropstructural aspects of brittleness fracture of polycrystalline materials caused by intergranular fracture. Structure-dependent intergranular brittle fracture in bicrystals and polycrystals are discussed and predicted theoretically. Experimental evidence for the structure-dependent intergranular fracture is shown and some general features are discussed to demonstrate the relationship between grain boundary structure/character, grain boundary energy and intergranular fracture strength. Theoretical prediction of the fracture toughness based on the strongest-link theory is introduced for polycrystals with different grain boundary microstructures, primarily defined by the grain boundary character distribution, grain boundary connectivity. Finally recent achievements of successful control of intergranular brittleness by grain boundary engineering based on the strongest-link theory are introduced for different materials.



Edited by:

Jaroslav Pokluda




T. Watanabe and S. Tsurekawa, "Prediction and Control of Grain Boundary Fracture in Brittle Materials on the Basis of the Strongest-Link Theory", Materials Science Forum, Vol. 482, pp. 55-62, 2005

Online since:

April 2005




[1] J. R. Low; Fracture, B.L. Averbach et. al. (ed), MIT. Press and John Wiley & Sons, (1959), 68-90.

[2] J.R. Low; Trans. Met. Soc. AIME., 245(1969), 2481-2494.

[3] G.T. Hahn; Met. Trans., 15A(1984), 947-959.

[4] A.W. Thompson and J.F. Knott; Met. Trans., 24A(1993), 523-534.

[5] G.A. Chadwick and D.A. Smith(ed); Grain Boundary Structure and Properties, Acad. Press, (1976).

[6] T. Watanabe; Res Mechanica, 11(1984), No. 1, 47-84.

[7] T. Watanabe; Mater. Sci. Eng., A176(1994), 39-49.

[8] T. Watanabe and S. Tsurekawa; Acta Mater., 47(1999), 4171-4185.

[9] T. Lin, A.G. Evans and R.O. Ritchie; Met. Trans. 18A(1987), 641.

[10] B. L. Adams, S.I. Wright and K. Kunze; Met. Trans., 24A(1993), 819-831.

[11] A.A. Griffith; Phil. Trans. Roy. Soc., A221(1920-1921), 163.

[12] S. Tsurekawa, T. Tanaka and H. Yoshinaga; Mater. Sci. Eng., A176(1994), 341-348.

[13] T. Tanaka, S. Tsurekawa, H. Nakashima and H. Yoshinaga; J. Inst. Metals, 58(1994), 382-389.

[14] L.C. Lim and T. Watanabe; Acta Met. Mater., 38(1990), 2507-2616.

[15] J. Su, M. Denuma and T. Hirano, Phil. Mag., A82(2002), 1541-1553.

[16] M. Grah, K.L. Alzebdeh, P.Y. Sheng, M.D. Vaudin, et. al, Acta Mater., 44(1996), 489-494.

[17] T. Watanabe; Met. Trans., 14A(1983), 531-545.

[18] T.C. Lee, M. Roberton and H.K. Birnbaum; Acta Met. Mater., 40(1992), 2569-2579.

[19] T. Watanabe; Mater. Sci. Eng., A166(1993), 11-28.

[20] L.C. Lim and T. Watanabe; Scripta Met., 23(1989), 2507-2616.

[21] G. Palumbo, P.J. King, K.T. Aust, U. Erb etlal.; Scripta Met. Mater., 25(1991), 1775-1780.

[22] T. Watanabe, H. Fujii, H. Oikawa and K. Arai; Acta Metall., 37(1989), 941-952.

[23] T. Watanabe, T. Hirano, T. Ochiai and H. Oikawa; Mater. Sci. Forum, 157-162(1994), 1103-1108.

[24] D. C. Craford and G.S. Was; Met. Trans., 23A(1992), 1195-1206.

[25] G. Palumbo, E.M. Lehockey and P. Lin; J. Metals, 50(1998), No. 2, 40-43.

[26] M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato and I. Karibe; Acta Mater., 50(2002), 2331-2341.

[27] S. Tsurekawa and T. Watanabe; Proc. MRS. Symp. on Interface Engineering, 586 (2000), 237-242.

[28] S. Yamaura, S. Tsurekawa and T. Watanabe; Mater. Trans., 44(2003), 1494-1502.

[29] S. Kobayashi,T. Yoshimura,S. Tsurekawa, T. Watanabe and J. Cui; Mater. Trans., 44(2003), 1469-1479.

[30] T. Watanabe; Mater. Sci. Forum., 408-412(2002), 39-48.