Plasticity of Copper with Small Grain Size

Abstract:

Article Preview

Based on the Taylor theory, a critical length scale is defined as the minimum dislocations cell size obtained at the maximum work-hardening for metals and alloys. When grain size is smaller than this length scale, corresponding also to a critical dislocation mean free path, new behaviours occur; such as ductility and strength, near perfect elasto-plasticity, high strain-rate sensitivity. Bulk samples are fabricated from Cu nanopowders (particle size 50 nm) by powder metallurgy techniques. The final grain size is comprised between the critical mean free path, evaluated at 130 nm and the size where transition to the so-called nano regime occurs (when unit dislocation no longer exists below 30 nm for Cu). Tensile tests are carried and microstructural analysis are performed before and after deformation.

Info:

Periodical:

Edited by:

Jaroslav Pokluda

Pages:

71-76

Citation:

Y. Champion et al., "Plasticity of Copper with Small Grain Size", Materials Science Forum, Vol. 482, pp. 71-76, 2005

Online since:

April 2005

Export:

Price:

$38.00

[1] J. Lian and B. Baudelet: Nanostruct. Mater. Vol2 (1993) p.415.

[2] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee: Nature Vol 398, (1999) p.684.

[3] L. Lu, M.L. Sui and K. Lu: Science Vol 287, (2000) p.1463.

[4] Y. Wang, M. Chen, F. Zhou and E. Ma: Nature Vol 419, (2002) p.912.

[5] Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J-L. Bonnentien and M. J. Hÿtch : Science Vol 300, (2003) p.310.

DOI: https://doi.org/10.1002/chin.200329011

[6] Y.M. Wang and E. Ma: Acta Mater. Vol 52, (2004) p.1699.

[7] M. Legros, B.R. Elliott M.N. Rittner, J.R. Weertman and K.J. Hemker: Phil Mag. A Vol 80 (2000) p.1017.

[8] H. Van Swygenhoven, P.M. Derlet and A. Hasnaoui: Phys. Rev. B Vol 66 (2002) p.024101.

[9] S. Cheng, J.A. Spencer and W.W. Milligan: Acta Mater. Vol 51 (2003), p.4505.

[10] R.Z. Valiev, R.K. Islamgliev and I. V. Alexandrov: Prog. Mater. Sci. Vol 45 (2000), p.103.

[11] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe: J. Mater. Res. Vol 17 (2002) p.5.

[12] A.H. Cottrell: Dislocations and plastic flow in crystals. (Oxford University Press, UK 1953).

[13] M.R. Staker and D.L. Holt: Acta Metall. Vol 16 (1982) p.569.

[14] Y. Champion, J. Bigot, Scripta Mater. 35, 517 (1996).

[15] N. Cheggour, et al Superconducting materials , 403 (IITT international, Paris, 1993).

[16] Y. Champion, S. Guérin-Mailly, J-L. Bonnentien, P. Langlois, Scripta Mater. 44, 1609 (2001).

[17] E.W. Hart: Acta Metall. Vol. 15 (1967) p.35.