Microscopic Spatial Distribution of Bound Excitons in High-Quality ZnO


Article Preview

The surface morphology of the ZnO layers is dominated by a distinct hexagonal domain structure. While the laterally integrated cathodoluminescence spectrum shows intense and narrow I8 luminescence, a distinct emission line at spectral position of I0/I1 emerges in the local spectra taken at domain boundaries. In contrast, no I0/I1 emission is found inside the domains. Monochromatic images further evidence the selective incorporation of impurities at the grain boundaries of domains. Monochromatic images of the I8 peak wavelength directly visualize the strain relaxation across the domains towards their very center, where a drop in quantum efficiency indicates enhanced defect concentration.



Materials Science Forum (Volumes 483-485)

Edited by:

Dr. Roberta Nipoti, Antonella Poggi and Andrea Scorzoni




F. Bertram et al., "Microscopic Spatial Distribution of Bound Excitons in High-Quality ZnO", Materials Science Forum, Vols. 483-485, pp. 1065-0, 2005

Online since:

May 2005




[1] D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Rev. 140 (1965), p. 5A.

[2] D.C. Look, Mat. Science and Engineering B80 (2001), 383.

[3] Y.F. Chen, D.M. Bagnell, H.J. Ko, K.T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998), p.3912.

[4] R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J.B. Halpern, M.G. Spencer, Y. x. Li, L.G. Salamanca-Riba, A.A. Iliadis, K.A. Jones, Appl. Phys. Lett. 73 (1998), p.348.

DOI: https://doi.org/10.1063/1.121830

[5] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, phys. stat. sol. (b) 241 (2004), p.231.

DOI: https://doi.org/10.1002/pssb.200301962

[6] N. Presser, J. Gutowski, I. Broser, Phys. Rev. B 38 (1988), p.9746.

[7] N. Oleynik, A. Dadgar, J. Bläsing, M. Adam, A. Krtschil, D. Forster, F. Bertram, A. Diez, M. Seip, A. Greiling, J. Christen and A. Krost, Japn. J. Appl. Phys. 42 (2003), p.7474.

DOI: https://doi.org/10.1143/jjap.42.7474

[8] A. Dadgar, N. Oleynik, D. Forster, S. Deiter, H. Witek, J. Bläsing, F. Bertram, A. Krtschil, A. Diez, J. Christen, A. Krost, J. of Crystal Growth, (2004) in print.

DOI: https://doi.org/10.1016/j.jcrysgro.2004.03.028

[9] J. Christen, M. Grundmann, D. Bimberg, J. Vac. Sci. Technol. B9 (1991), p.2358; or F. Bertram, T. Riemann, J. Christen, A. Kaschner, A. Hoffmann, C. Thomsen, K. Hiramatsu, T. Shibata and N. Sawaki, Appl. Phys. Lett, 74 (1999), p.359.

DOI: https://doi.org/10.1063/1.123071

[10] T. Riemann, J. Christen, G. Kaczmarczyk, A. Kaschner, A. Hoffmann, A. Zeuner, D. Hofmann, B.K. Meyer, phys. stat. sol. (b) 229 (2002), p.891.

DOI: https://doi.org/10.1002/1521-3951(200201)229:2<891::aid-pssb891>3.0.co;2-#

[11] F. Bertram, J. Christen. M. Schmidt, K. Hiramatsu, S. Kitamura. N. Sawaki, Physica E 2 (1998), p.552.

[12] F. Bertram, J. Christen, M. Schmidt, M. Topf, S. Fischer, B. Meyer, Mat. Science and Engineering B50 (1997), p.165.