High-Temperature Stable Multi-Defect Clusters in Neutron Irradiated Silicon Carbide: Electron Paramagnetic Resonance Study


Article Preview

The high-temperature stable defect complexes in 6H-SiC crystals created by heavy neutron irradiation and following high-temperature annealing have been discovered by EPR. After annealing at 1500°C at least five new axially symmetric centers with the electron spin S = 1/2 and S = 1 were shown to arise in 6H-SiC crystals. The striking feature of all discovered centers is a strong hyperfine interaction with a great number (up to twelve) of equivalent host Si (C) atoms. Two models, a four-vacancy complex VSi-3VC, and a split-interstitial antisite (C2)Si or a pair of two antisites (C2)Si-SiC are discussed. There is a good probability that some of new centers could be related to the famous D1 and DII centers. After annealing at 2000°C the dc1-dc4 centers disappeared and a new triplet center labeled as N-V in the form of a silicon vacancy and a nitrogen atom in neighboring carbon substitutional position has been observed. The parameters of this center are similar to that for well-known N-V center in diamond.



Materials Science Forum (Volumes 483-485)

Edited by:

Dr. Roberta Nipoti, Antonella Poggi and Andrea Scorzoni




P.G. Baranov et al., "High-Temperature Stable Multi-Defect Clusters in Neutron Irradiated Silicon Carbide: Electron Paramagnetic Resonance Study", Materials Science Forum, Vols. 483-485, pp. 489-492, 2005

Online since:

May 2005




[1] V.V. Makarov: Sov. Phys. Solid State Vol. 13, (1972), p. (1974).

[2] W.J. Choyke and L. Patrick: Phys. Rev. B Vol. 4, 1843 (1971); L. Patrick and W.J. Choyke: Phys. Rev. B Vol. 5 (1972), p.3253; L. Patrick and W.J. Choyke: J. Phys. Chem. Solids Vol. 34 (1973), p.565.

DOI: https://doi.org/10.1103/physrevb.5.3253

[3] T. Egilsson, J.P. Bergman, I.G. Ivanov, A. Henry, and E. Janzén: Phys. Rev. B Vol. 59 (1999), p. (1956).

[4] A. Gali et al.: Phys. Rev. B Vol. 67 (2003), 155203 and references therein.

[5] A.A. Sitnikova, E.N. Mokhov, and E.I. Radovanova: Phys. Stat. Sol. (a) Vol. 135 (1993), K45.

[6] A.I. Girka, A.D. Mokrushin, E.N. Mokhov, V.M. Osadchiev, S.V. Svirida, and A.V. Shishkin: Sov. Phys. JETP Vol. 70 (1990), p.322.

[7] L. Henry, M. -F. Barthe, C. Corbel, P. Desgardin, G. Blondiaux, S. Arpiainen, and L. Liszkay: Phys. Rev. B Vol. 67 (2003), 115210.

[8] G. Watkins: in Deep Centers in Semiconductors, edited by S.T. Pantelides (Gordon and Breach, New York, 1986), p.147.

[9] I.V. Ilyin, M.V. Muzafarova, E.N. Mokhov, P.G. Baranov, S.B. Orlinskii, J. Schmidt: Physica B, Vols. 340-342 (2003), p.128.

DOI: https://doi.org/10.1016/j.physb.2003.09.053

[10] V.S. Vainer, and V.A. Il'in: Sov. Phys. Solid State Vol. 23 (1981), p.2126.

[11] V.S. Vainer and V.A. Il'in: Sov. Phys. Solid State Vol. 23 (1981), p.1432.

[12] A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski: Science 276 (1997), p.2012 and references therein.

Fetching data from Crossref.
This may take some time to load.