First Principles Simulations of SiC-Based Interfaces


Article Preview

We review some recent investigations on prototypical SiC-based interfaces, as obtained from first-principles molecular dynamics. We discuss the interface with vacuum, and the role played by surface reconstruction in SiC homoepitaxy, and adatom diffusion. Then we move to the description of a buried, highly mismatched semiconductor interface, the one which occurs between SiC and Si, its natural substrate for growth: in this case, the mechanism governing the creation of a network of dislocations at the SiC/Si interface is presented, along with a microscopic description of the dislocation core. Finally, we describe a template solid/liquid interface, water on SiC: based on the predicted structure of SiC surfaces covered with water molecules, we propose (i) a way of nanopatterning cubic SiC(001) for the attachment of biomolecules and (ii) experiments to reveal the local geometry of adsorbed water.



Materials Science Forum (Volumes 483-485)

Edited by:

Dr. Roberta Nipoti, Antonella Poggi and Andrea Scorzoni




A. Catellani et al., "First Principles Simulations of SiC-Based Interfaces", Materials Science Forum, Vols. 483-485, pp. 541-546, 2005

Online since:

May 2005




[1] V. Bermudez, Nature Materials Vol. 2 (2003) p.218.

[2] M. Sabisch et al., Phys. Rev. B Vol. 51 (1995) p.13367; J. Pollmann et al., Phys. Stat. Sol. (b) Vol. 202 (1997) p.421; J. Pollmann et al., Appl. Surf. Sci. Vol. 104-105 (1996) p.1.

[3] F. Bechstedt et al., Phys. Stat. Sol. (b) Vol. 202 (1997) p.35; F. Bechstedt, P. Kaeckell, Phys. Rev. Lett. Vol. 75 (1995) p.2180; P. Kaeckell et al., Phys. Rev. B Vol. 60 (1999) p.13261.

[4] F. Gao et al., Phys. Rev. B Vol. 64 (2001).

[5] A. Catellani, and G. Galli, Prog. Surf. Sci. Vol. 69 (2002) p.101.

[6] M. Kitabatake, Thin Solid Films Vol. 369 (2000) p.257; V. Chirita et al, Thin Solid Films Vol. 294 (1997) p.47.

[7] G. Cicero et al, Phys. Rev. Lett. Vol. 89 (2002) p.156101; L. Pizzagalli et al, Phys. Rev. B Vol. 68 (2003) p.195302.

[8] F. Amy and Y. J. Chabal, J. Chem. Phys. Vol. 119 (2003) p.6201; V. Bermudez, Surf. Sci. Vol. 540 (2003) p.255 ; P. González et al, Biomaterials Vol. 24 (2003) p.4827.

[9] For SiC(0001) surfaces we used the FPMD code (C. Cavazzoni and G.L. Chiarotti, Comput. Phys. Commun. Vol. 123 (1999).

[10] SiC(111) surfaces are studied in a 2(√3x√3) lateral unit cell (12 atoms/layer) and 8 layers and ~12. 5 Ǻ vacuum. SiC(001) surfaces are studied in a c(4x4) lateral unit cell (8 atoms/layer) and 11 layer symmetric slabs; test calculations have been performed in a 16 atoms/layer, 11 layers slab. In the case of the dislocation network, the long tailed stress field induces an interaction between the replicas: the supercell lateral dimensions are in this peculiar case dictated by the near-coincidence lattice model: a perfect coincidence site between two structures of lattice parameters a1 and a2 is realized when a1/a2 =m/n, with m and n positive integers. For the cubic SiC/Si system, m=5 and n=4: this gives 25 (16) atoms/layer in the SiC (Si) part. For this last case, since outermost layers are saturated with H atoms, a smaller vacuum region of ~9 Ǻ was enough to describe the system.


[11] M.C. Righi et al, Phys. Rev. Lett. Vol. 91 (2003) p.136101.

[12] G. Cicero et al, Phys. Rev. Lett. Vol. 93 (2004) p.16102.

[13] A. Fissel, Physics Reports Vol. 379 (2003) p.149.

[14] J. Northrup, and J, Neugebauer, Phys. Rev. B Vol. 52 (1995) p. R17001; U. Starke et al, Phys. Rev. Lett., Vol. 82 (1999) p.2107.

[15] G. Henkelman, and H. Jonsson, J. Chem. Phys. Vol. 113 (2000) p.9978; G. Henkelman et al, J. Chem. Phys. Vol. 113 (2000) p.9901.

[16] C. Long et al, J. Appl. Phys. Vol. 86 (1999) p.2509.

[17] G. X. Qian et al, Phys. Rev. B Vol. 38 (1988).

[18] S. Frabboni, private comm.; V. Grillo et al, Inst. Phys. Conf. Series, in press (2003).

[19] K.C. Hass et al, Science Vol. 282 (1998) p.265.