Temperature Stability of Breakdown Voltage on SiC Power Schottky Diodes with Different Barrier Heights


Article Preview

The static and dynamic electrical characterization of power Schottky rectifiers both with Ti and Ni2Si as Schottky metals having low negative coefficient of the breakdown voltage versus temperature will be presented in this paper. The values of the barrier height are respectively 1.28eV and 1.68eV, as extracted using the Tung’s model for inhomogeneous contacts from forward currentvoltage characteristics. These values were found to be in good agreement with those obtained by means of capacitance-voltage measurements. The breakdown voltage shows an almost linear dependence from the temperature for both types of devices. The extracted coefficients are respectively -0.08V/°C and -0.11V/°C, thus guarantying stable and reliable behaviour. Very short reverse recovery time at RT and at 125°C confirms the good thermal stability of these devices.



Materials Science Forum (Volumes 483-485)

Edited by:

Dr. Roberta Nipoti, Antonella Poggi and Andrea Scorzoni




R. Pierobon et al., "Temperature Stability of Breakdown Voltage on SiC Power Schottky Diodes with Different Barrier Heights", Materials Science Forum, Vols. 483-485, pp. 933-936, 2005

Online since:

May 2005




[1] J. A. Cooper, A. Agarwal, Proc. IEEE, vol. 90, no. 6, pp.956-968, (2002).

[2] G. Spiazzi, S. Buso, M. Citron, R. Pierobon, M. Corradin, IEEE Trans. Power El., vol. 18, no. 6, pp.1249-1253, (2003).

DOI: https://doi.org/10.1109/tpel.2003.818821

[3] T. Kimoto, T. Urushidani, S. Kobayashi, H. Matsunami, IEEE El. Dev. Lett., vol. 14, no. 2, pp.548-50, June (1993).

[4] R. Raghunathan, D. Alok, B. Baliga, IEEE El. Dev. Lett., vol. 16, no. 6, pp.226-7, June (1995).

[5] P. G. Neudeck, D. J. Larkin, C. Fazi, Proc. Dev. Res. Conf., IEEE Elec. Dev. Soc., (1996).

[6] P. G. Neudeck, C. Fazi, IEEE El. Dev. Lett., vol. 18, no. 3, pp.96-8, March (1997).

[7] A. O. Kostantinov, N. Nordell, Q. Wahab, U. Lindefelt, Appl. Phys. Lett., vol. 73, no. 13, pp.1850-52, Sept. (1998).

[8] R. Raghunatan, B. J. Baliga, Appl. Phys. Lett., vol. 72, no. 24, pp.3196-3198, (1998).

[9] Q. Wahab, A. Ellison, A. Henry, E. Janzen, C. Hallin, J. Di Persio, R. Martinez, Appl. Phys. Lett., vol. 76, no. 19, pp.2725-27, May (2000).

[10] F. Roccaforte, F. La Via, V. Raineri, L. Calcagno, P. Musumeci, G. G. Condorelli, Appl. Phys. A, vol. 77, pp.827-833, (2003).

[11] F. La Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musumeci, L. Calcagno, Microelectronic Engineering, vol. 60, no. 1, pp.269-282, (2002).

DOI: https://doi.org/10.1016/s0167-9317(01)00604-9

[12] F. Roccaforte, F. La Via, A. La Magna, S. Di Franco, V. Raineri, IEEE Trans. Electron Devices, vol. 50, no. 8, pp.1741-1747, Aug. (2003).

DOI: https://doi.org/10.1109/ted.2003.815127

[13] F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, E. Zanoni, J. Applied Physics, vol. 93, no. 11, June (2003).

[14] R. T. Tung, Phys. Rev., vol. B45, p.13509, (1992).