Compressive Properties of Open Cell Aluminum Foams


Article Preview

The uniaxial compressive test results of several aluminum foams are compared with aluminum alloy and ppi (pore per inch) of open cell foam. The compressive stress-strain curve of aluminum alloy foams exhibits universal three deformation regions: an initial linear elastic response, and then extended plateau region with a nearly constant flow stress, a final densification as collapsed cells are compacted together. The lower the foam densities are, the longer the plateau region is, but lower densities also imply lower yield stress.



Materials Science Forum (Volumes 486-487)

Edited by:

Hyung Sun Kim, Sang-Yeop Park, Bo Young Hur and Soo Wohn Lee




B. Y. Hur et al., "Compressive Properties of Open Cell Aluminum Foams", Materials Science Forum, Vols. 486-487, pp. 472-475, 2005

Online since:

June 2005




[1] L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Pergamon Press, Oxford, (1988).

[2] A.N. Gent and A.G. Thomas: J. Appl. Polymer Sci Vol. 1 (1959), p.107.

[3] A.N. Gent and A.G. Thomas: Rubber Chem. Technol. 36 (1963), p.597.

[4] M.C. Shaw and T. Sata: Int. J. Mech. Sci Vol. 8 (1966), p.469.

[5] K.C. Rusch: J. Appl. Polymer Sci Vol. 13 (1969), p.2297.

[6] M.R. Patel and I. Finnie: J. Mater Vol. 5 (1970), p.907.

[7] J. Miltz and G. Gruenbaum: Polymer Eng. Sci Vol. 21 (1981), p.1010.

[8] M.F. Ashby: Metall. Trans. A 14A (1983), p.1755.

[9] G.J. Davies and S. Zhen: J. Mater. Sci Vol. 18 (1983), p.1899.

[10] P.H. Thornton and C.L. Magee: Metall. Trans. A 6A (1975), p.1253.

[11] P.H. Thornton and C.L. Magee: Metall. Trans. A 6A (1975), p.1801.

[12] T.G. Nieh, J.H. Kinney, J. Wadsworth and A.J.C. Ladd: Scripta Mater Vol. 38 (1998), p.1487.

[13] Y. Sugiura, J. Meyer, M.Y. He, H.B. Smith, J. Grenstedt and A.G. Evans: Acta Mater Vol. 45 (1997), p.5245.

[14] J. Banhart and J. Baumeister: J. Mater. Sci Vol. 33 (1998), p.1431.

[15] A.E. Simone and L.J. Gibson: Acta Mater Vol. 46 (1998), p.3109.

[16] O. Prakash, H. Sang and J.D. Embury: Mater. Sci. Eng. A199 (1995), p.195.

[17] C.Q. Dam, R. Brezny and D.J. Green: J. Mater. Res Vol. 5 (1990), p.163.

[18] S.K. Maiti, L.J. Gibson and M.F. Ashby: Acta Metall Vol. 32 (1984), p. (1963).

[19] Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, to be published.

[20] ASM: ASM Handbook Vol. 15, p.242.

[21] A.F. Bastawros, H. Bart-Smith and A.G. Evans: J. Mech. Phys. Solids Vol. 48 (2000), pp.301-322.

[22] H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Acta Mater Vol. 46 (1998), pp.3583-3592.