Characterization of Iron and Its Nitride Nanoparticles Prepared by CVC Process without Using a Chiller

Abstract:

Article Preview

Iron and its nitride (e-Fe3N) nanoparticles were fabricated by the CVC using Fe(CO)5 precursor without the aid of LN2 chiller. The iron particles synthesized at 400 oC were a mixture of amorphous and crystalline a-Fe. Fully crystallized iron particles were then obtained above 600 oC. Iron-nitride particles that were easily formed at 500 oC at 1 atm., however, were not fully developed in vacuum unless the reaction temperature reached 850 oC. Nevertheless, the work chamber needed to be maintained in vacuum to obtain finer iron-nitride particles. The synthesized particles possessing the core-shell type structure were all nearly spherical and enclosed with Fe3O4 or Fe3O4-related amorphous layer. The iron nanoparticles (~20 nm) synthesized at 600 oC at 760 torr exhibited iHc ~ 1.0 kOe and Ms ~ 170 emu/g, whereas the iron-nitride particles (~20 nm) synthesized at 850 oC at 0.01 torr exhibited iHc ~ 0.45 kOe and Ms ~ 115 emu/g.

Info:

Periodical:

Materials Science Forum (Volumes 486-487)

Edited by:

Hyung Sun Kim, Sang-Yeop Park, Bo Young Hur and Soo Wohn Lee

Pages:

518-521

DOI:

10.4028/www.scientific.net/MSF.486-487.518

Citation:

D.W. Lee et al., "Characterization of Iron and Its Nitride Nanoparticles Prepared by CVC Process without Using a Chiller", Materials Science Forum, Vols. 486-487, pp. 518-521, 2005

Online since:

June 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.