Effects of Cooling Rate on Solidification Microstructure of ZK60 Magnesium Alloy

Abstract:

Article Preview

In this paper, the influence of the cooling rate on the solidified structure of ZK60 Mg alloy has been studied by means of Gleeble-1500D thermal simulation instrument. The result showed that the grain size and grain shape depended on the cooling rate, Primary Dendrite Arm Space ( λI ) and Secondary Dendrite Arm Space ( λII) sharply decreased with the increasing of solidifying cooling rate (v) in the range of experimental cooling rate (0.2~100K/s). When superheat was constant, the empirical formulas of the relation between λI λII and v was obtained. In addition, the dependence between micro-hardness (HV) and Secondary Dendrite Arm Space ( λII) for ZK60 casting alloy was proved to be similar with Hall-Petch formula. The empirical formula for λII-HV has been proposed.

Info:

Periodical:

Materials Science Forum (Volumes 488-489)

Edited by:

W.Ke, E.H.Han, Y.F.Han, K.Kainer and A.A.Luo

Pages:

295-298

DOI:

10.4028/www.scientific.net/MSF.488-489.295

Citation:

C. M. Yang et al., "Effects of Cooling Rate on Solidification Microstructure of ZK60 Magnesium Alloy", Materials Science Forum, Vols. 488-489, pp. 295-298, 2005

Online since:

July 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.