Manufacturing Technique of Magnesium Alloy Sheets by Powder Rolling

Abstract:

Article Preview

Conventional manufacturing processes of metal and alloys sheets are rolling. The poor formability of magnesium alloys at room temperature makes rolling difficult. In the present paper, a manufacturing technique of sheets by powder rolling was employed to fabricate magnesium alloy sheets. The technique consisted of roll compaction, sintering, re-rolling and annealing. Powders of Mg-3 wt% Al mixed using a global mill were roll compacted into green sheets using two counter rotating rolls to the thickness of approximately 0.60 mm. Roll compacted green sheets were sintered at 823 K in argon atmosphere. Sintered green sheets were then re-rolled at ambient temperature to approximately 0.22 mm to obtain fully dense sheets. There was no significant edge cracking observed in the process of cold rolling. It is reasonable to believe that powder rolling is a promising technique for manufacturing magnesium alloys sheets.

Info:

Periodical:

Materials Science Forum (Volumes 488-489)

Edited by:

W.Ke, E.H.Han, Y.F.Han, K.Kainer and A.A.Luo

Pages:

445-448

Citation:

G. S. Huang et al., "Manufacturing Technique of Magnesium Alloy Sheets by Powder Rolling", Materials Science Forum, Vols. 488-489, pp. 445-448, 2005

Online since:

July 2005

Export:

Price:

$38.00

[1] R. F. Deker: Adv. Mater. Process Vol. 154 (1998), p.31.

[2] M. M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium Alloys, Ohio: ASM International, (1999).

[3] R. K. Dube: Int. Mater. Rev. Vol. 35 (1990), p.253.

[4] Dong Guo and Zhide Zhou: Metal Powder Rolling (Metall. Indu. Press, China 1984).

[5] L. Davis, W. M. Gibbon and A. G. Harris: Powder Metall. Vol. 11 (1968), p.295.

[6] T. S. Daugherty: Powder Metall. Vol. 11 (1968), p.342.

[7] N. J. Willianms and V. A. Tracey: Int. J. Powder Metall. Vol. 4 (1968), p.47.

[8] D. G. Hunt and R Eborall: Powder Metall. Vol. 5 (1960), p.1.

[9] J. D. Shaw and W. V. Knopp: Int. J. Powder Metall. Vol. 2 (1966), p.27.

[10] D. K. Worn and R. P. Perks: Powder Metall. Vol. 3 (1959), p.45.

[11] M. H. D. Blore, B. W. Kushnir, W. R. Duncan and A. H. Lee: Sheet Met. Ind. Vol. 49 (1972), p.404.

[12] C. H. Weaver, R. G. Butters and J. A. Lund: Int. J. Powder Metall. Vol. 8 (1972), p.3.

[13] G. M. Sturgeon, G. Jackson, V. Barker and G. M. H. Sykes: Powder Metall. Vol. 11 (1968), p.314.

[14] I. Davis, W. M. Gibbon and A. G. Harris: Powder Metall. Vol. 11 (1968), p.295.

[15] G. E. Wieland and E. M. Rudzki: Int. J. Powder Metall. Powder Tech. Vol. 12 (1976), p.103.

[16] S.C. Deevi: Intermetallics Vol. 8 (2000), p.679.

[17] C. Mochizuki and M. Mikami: J. of Nuclear Mater. Vol. 271&272 (1999), p.508.

[18] R. W. Fraser and D. J. I. Evans: Powder Metall. Vol. 11 (1968), p.358.

[19] M. R. Hajaligol, S. C. Deevi, V. K. Sikka and C. R. Scorey: Mater. Sci. Eng. A Vol. 258 (1998), p.249.

[20] A. Staroselsky and L. Anand: Int. J. of Plasticity Vol. 19 (2003), p.1843.

Fetching data from Crossref.
This may take some time to load.