Approximate Analytical Formulae to Evaluate the Uncertainty in X-Ray Stress Analysis


Article Preview

The global uncertainty, in X-ray stress analysis, is due to many factors but one of the most important is the uncertainty on peak positions due to counting statistics and other random errors on peak positions. Although a lot of work has been done to estimate the latter, very little work has been devoted to its propagation through the least square regression. This work presents some analytical results in the general case of triaxial stress state (elliptic curve fit) and proposes approximate formulae to easily compute the uncertainty on normal and shear stress components from acquisition parameters such as the number N of y tilts and the maximum y value. It was found that the latter only influences significantly the uncertainty on the normal stress component and that the dependency of the uncertainty on N does not necessarily follow a 1/ N relation.



Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu




M. François et al., "Approximate Analytical Formulae to Evaluate the Uncertainty in X-Ray Stress Analysis", Materials Science Forum, Vols. 490-491, pp. 124-124, 2005

Online since:

July 2005




[1] Noyan I.C., Cohen J.B. : Residual Stress, Measurement by Diffraction and Interpretation (Springer-Verlag, Berlin, 1987).

[2] Lu J. (editor) : Handbook of measurement of residual stresses (Soc. For Experimental Mechanics, The Fairmont Press Inc. 1996).

[3] Convert F., Miège B., The control of geometrical sources of error in X-ray diffraction applied to stress analysis, (1992), J. Appl. Cryst 25, 384-390.


[4] Sprauel J.M. : Etude par diffraction X des facteurs mécaniques influençant la corrosion sous contraintes d'aciers inoxydables, Thesis, University Paris 6, 16 June (1988).

[5] Sprauel J.M., Barrallier L. : Utilisation d'outils statistiques pour l'évaluation des contraintes par diffractométrie X, Siemens X-ray users' meeting, vol. 2, Paris, April (1992).

[6] François M., Bourniquel B., Not C., Guillén R., Duval C., Parameters influencing peak localization repeatability for X-ray stress measurements - use of experiment designs technique, Zeitschrift für metallkunde, 91 (2000) 5, 414-420.

[7] Rabinovich S.G.: Measurement errors and uncertainties, theory and practice (Springer Verlag, New York 2000).

[8] Lira I.: Evaluating the measurement uncertainty : fundamentals and practical guidance (Institute of Physics Publishing, Bristol, 2002).

[9] François M., Ferreira C., Guillén R., Effects of temperature fluctuations on X-ray stress determination, Proc. of ICRS7, Xi'An, People's Republic of China, June 14-17, (2004).

[10] François M., Ferreira M., Guillén R., Expression de l'incertitude lors de la mesure de contraintes résiduelles par diffraction, RX 2003, Strasbourg, 9-11 décembre (2003).


[11] ISO, Guide to the expression of uncertainty in measurement, 1993, Geneva, Switzerland: International Organisation for Standardisation.

[12] Kirkup L., A guide to GUM, Eur. J. Phys. 23 (2002) 483-487.

[13] Fry T., Kandil F.A., A study of parameters affecting the quality of residual stress measurements using XRD, Mat. Science Forum, vols 404-407 (2002) 579-586.


[14] François M., Convert F., Branchu S., French round-robin test on X-ray stress determination on a shot-peened steel, Experimental Mechanics, vol 40, n°4, 2000, 361-368.


[15] François M., Ferreira C., Botzon R., Reference specimens for X-ray stress analysis, the French experience, Metrologia 41 (2004), 33-40.