In Situ Neutron Diffraction Studies of Phase Transformations in Si - Mn TRIP Steel


Article Preview

High strength and ductility of the TRIP steels is often attributed to the transformation induced plasticity effect resulting from the strain induced martensitic transformation of the retained austenite in the bainite microstructure. The present work reports results of in-situ neutron diffraction experiments focused on monitoring the phase evolution in two TRIP steel samples (two different thermomechanical treatments) subjected to tensile loading at room temperature. Comparison of the single lineprofile analysis of reactor data (TKSN-400 at NPI Rez) and multi lineprofile analysis of data obtained at spallation neutron source (diffractometer ENGIN-X at ISIS RAL Chilton) suggests that the former can be used in the first approximation for in-situ monitoring of the phase evolution in TRIP steels subjected to mechanical loads.



Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu




O. Muránsky et al., "In Situ Neutron Diffraction Studies of Phase Transformations in Si - Mn TRIP Steel", Materials Science Forum, Vols. 490-491, pp. 275-280, 2005

Online since:

July 2005




[1] Zackay, V.; et al.: Trans. of ASM, Vol. 31 (9) (1967) 252.

[2] Ros-Yáñez, T.; Houbaert, Y.; Mertens A.: Characterization of TRIP-assisted multiphase steel surface topography by atomic force microscopy, Materials Characterization 47 (2001) 93-104.


[3] Wirthl, E.; Pichler, A.; Angerer, R.; Stiaszny, P.; Hauzenerger, K.; Titovels, Y.; Hackl, M.: Determination of the volume amount of retained austenite and ferrite in small specimens by magnetic measurements, Fundamental Materials Science of the TRIP Phenomenon, Int. Conf. On TRIP-Aided High Strength Ferrous Alloys, p.61.

[4] Zhao, L.; Moreno J.; Kuruijver, S.; Sietsma, J.; van der Zwaag, S.: Influence of intercritical anneling temperature on phase transformations in a high aluminium TRIP steel, TRIP-Aided Ferrous Alloys, Int. Conf. on TRIP-Aided High Strength Ferrous Alloys p.141.


[5] Lukáš, P.; Jenčuš, P.; Zrník, J.; Nový, Z.: Optimalization of thermomechanical processing of SM TRIP steel by using of in situ neutron diffraction, in Proc. of 9th International conference on the mechanical behavior of materials, Geneve, May 22-29, (2003).


[6] Zhao, L.; van Dijk, N.H.; Brück, E.; Sietsma, J.; van der Zwaag, S.: Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Materials Science and Engineering A313 (2001) 145-152.


[7] Bleck, W.; Frehn, A.; Ohlert, J.: Proc. of Int. Conf. on Niobium 2001, Orlando, Florida, USA, December (2001).

[8] K. Sugimoto, M. Kobayashi, H. Shirasawa: Trans. ISIJ Int., 33 (1993) 775.

[9] I. Tsukatani, S. Hashimoto, T. Inoue: HSLA steels: Processing, properties and Applications, Eds. G. Tither and A. Shouhua, TSM, (1992) 291.

[10] Lukáš, P.; Neov, D.; Strunz, P.; Vrána, M.; Mikula, P.; Tomota, Y.; Harjo, S. and Ono, M.: Poc. of ICM8, Victoria, 1999, Vol. II, p.503.

[11] P. Šittner, V. Novák, P. Lukáš, D. Lugovy, D. Neov and M. Tovar, Material Science Forum, Vol 404-407, 2002, pp.829-834.