Alternative Mechanical Surface Treatments for Fatigue Strength Enhancement

Abstract:

Article Preview

In this paper, The effects of laser-shock peening and high temperature deep rolling on nearsurface microstructures, residual stress states and fatigue behavior of various metallic materials are investigated and discussed. Similar to warm peening (shot peening at elevated temperatures), high temperature deep rolling may induce several favourable effects, especially in ferritic steels, where dynamic strain aging by carbon atoms can be exploited as a major strengthening mechanism. But also in materials without ‚classical‘ strain aging high temperature deep rolling is effective in improving the fatigue behaviour by inducing favourable, e.g. precipitation-hardened, nearsurface microstructures. As a consequence, these modified near-surface microstructures directly alter the thermal and mechanical relaxation behaviour of residual stresses. Laser-shock peening is already used in the aircraft industry (as a mechanical surface treatment for fan-blades) and owes its benefial effects to deep layers of compressive residual stress and work hardening and a relatively smooth surface roughness. Characteristic examples of microstructures and residual stress profiles as generated by laser-shock peening are presented. Moreover, the impact on the fatigue behavior of steels and a titanium alloy is outlined and discussed.

Info:

Periodical:

Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu

Pages:

328-333

DOI:

10.4028/www.scientific.net/MSF.490-491.328

Citation:

I. Altenberger "Alternative Mechanical Surface Treatments for Fatigue Strength Enhancement", Materials Science Forum, Vols. 490-491, pp. 328-333, 2005

Online since:

July 2005

Authors:

Export:

Price:

$35.00

[1] B. Scholtes, E. Macherauch: Z. Metallkunde Vol. 77 (1986) , p.322.

[2] B.A. Cowles: Int. J. Fracture Vol. 80 (1996), p.147.

[3] G.S. Was, R.M. Pelloux: Metall Trans A Vol 10 (1979), p.656.

[4] C.S. Montross, Z. Wei, L. Ye, G. Clark, Y.W. Mai: Int. J. Fatigue Vol. 24 (2002), p.1021.

[5] B.P. Fairand, A.H. Clauer, R.G. Jung, B.A. Wilcox: Appl. Physics Letters Vol. 25 (1974), p.431.

[6] J. Kaspar, A. Luft: Prakt. Metall. Vol. 37 (2000), p.181.

[7] P. Peyre, L. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, C. Lemaitre: Mater. Sci. Eng. A Vol. 280 (1999), p.294.

[8] I. Altenberger, In: Shot Peening (Ed. L. Wagner), Wiley-VCH, Weinheim, 2003, p.421.

[9] R. Menig, V. Schulze, O. Vöhringer, In: Shot Peening (Ed. L. Wagner), Wiley-VCH, Weinheim, 2003, p.498.

[10] U. Noster, I. Altenberger, R.O. Ritchie, B. Scholtes, In: Shot Peening (Ed. L. Wagner), Wiley-VCH, Weinheim, 2003, p.447.

[11] I. Altenberger, R.K. Nalla, U. Noster, G. Liu, B. Scholtes, R.O. Ritchie: Mat. Wiss. U. Werkstofftech. Vol. 34 (2003), p.529.

[12] P.S. Prevey, D. J. Hornbach, P.W. Mason: In: Proc. of the 17th ASM Heat Treating Society Conference (Eds.: D.L. Milam, D. A. Poteet, Jr., G.D. Pfaffmann, V. Rudnev, A. Muehlbauer, W.B. Albert), ASM, Metals Park, 1997, p.3.

[13] P.S. Prevey: In: 20th ASM Heat Treating Society Conference (Eds.: K. Funatani, G. E. Totten), ASM. Metals Park, 2000, p.426.

[14] I. Altenberger, E.A. Stach, G. Liu, R.K. Nalla, R.O. Ritchie: Scripta Mater. Vol. 48 (2003), p.1593.

[15] R.K. Nalla, I. Altenberger, U. Noster, G. Y. Liu, B. Scholtes, R.O. Ritchie: Mater. Sci. Eng. A Vol. 355 (2003), p.216.

[16] I. Nikitin, B. Scholtes, H.J. Maier, I. Altenberger: Scripta Mater., 2004, in press.

[17] Altenberger, I.; Noster, U.; Boyce, B.L.; Peters, J.O.; Scholtes, B.; Ritchie, R.O.: Mater. Sci. Forum Vol. 404-407 (2002), p.457.

[18] A. Wick, V. Schulze, O. Vöhringer: Mater. Sci. Eng. A Vol. 293 (2000), p.191.

[19] M. Schilling-Praetzel: Dr. -Ing. Dissertation, RWTH Aachen, (1994).

[20] I. Altenberger, B. Scholtes: Mater. Sci. Forum Vol. 347-349 (2000), p.382.

In order to see related information, you need to Login.