Internal Stress Effects on Mechanical Properties of TiCp Particle Reinforced Titanium Composites


Article Preview

In this paper the internal stresses had been measured on Ti-6Al-4V/7TiC, Ti-3Al-2.5V/7TiC and TP650 composite using the XRD method, the results show no other phases separate out besides the alpha(major phase, for over 90 percent), bate and TiC in the course of heating treatment. Compared the internal stress between prior of heat-treatment and latters, the internal stress was induced in Ti matrix and reinforcement (TiC particles). With temperature of heat-treatment enhancing, internal stress increases gradually, respectively. The relation between the internal stress and strength properties shows the static tensile strength of T64,T32 and T650 developed gradually with compressive internal stress increasing on TiC particle. The compressive stress induced in reinforcement relieved the stress intensity on surface of particle and develops the fracture toughening.



Materials Science Forum (Volumes 490-491)

Edited by:

Sabine Denis, Takao Hanabusa, Bob Baoping He, Eric Mittemeijer, JunMa Nan, Ismail Cevdet Noyan, Berthold Scholtes, Keisuke Tanaka, KeWei Xu




X. N. Mao et al., "Internal Stress Effects on Mechanical Properties of TiCp Particle Reinforced Titanium Composites", Materials Science Forum, Vols. 490-491, pp. 564-570, 2005

Online since:

July 2005




[1] T. S. Srivatsan, T. S. Sudarshan and E. J. Lavernia, Prog. Mater. Sci. 1995 (39): 317-409.

[2] Z.X. Guo and B. Derby, Prog. Mater. Sci. 1995 (39): 411-495.

[3] F.H. Froes and C. Rev. Particulate Mater. 1993 (1): 223-275.

[4] Y. Shi, X. Huang and D. Yan, Journal of Materials Science Letters 1999 (18): 213-216.

[5] N. A. Waterman, M. F. Ashby, Elservier materials selector, Elservier Science Publishers Ltd., (1991).

[6] P. Yoder, J. Appl. Phys. 1995, 58(31): R1-R2.

[7] R.J. Arsenault, in: R.K. Everett, R.J. Arsenasult (Eds. ), Metal matrix composites: mechanisms and properties, Academic Press, San Diego, CA, 1991, 79-87.

[8] French Standard Methode d'essais pour l'analyse des contraintes résiduelles par diffraction des rayons X, AFNOR, NXP-A-09-285, mai (1999).

[9] I.C. Noyan & J.B. Cohen, Residual stress - measurement by diffraction and interpretation, Springer Verlag, New York, (1987).

[10] K. Akagi, Y. Okamoto, T. Matsuura and T. Horibe, J. Prosthet. Dent. 1992 (68) : 462-470.

[11] P.S. Prevéy, , Adv. In X-Ray Analysis, 1997 (22): 345-354.

[12] I. Altenberger, R.K. Nalla, U. Noster, B. Scholtes, R.O. Ritchic, On the fatigue behaviour and associated effect of residual stresses in deep-rolled and laser shock peened Ti-6Al-4V alloys at ambient and elevated temperatures, Mater. Sci. Eng. A, 2003. in press. Or HCF 2002, 7th national turbine engine high cycle fatigue conference ( Cd- Issue) palm beach gardens (FL), USA, May (2002).


[13] D.Q. Zhang, in: J.W. He, Residual stress analysis by X-ray diffraction and its function, Xi'an Jiaotong University Press, 1999, 4.

[14] ASTM E-8 The test method for tension testing of metallic materials, American society of testing and materials, Race Street, Philadelphia, PA, (1995).

[15] J.D. Eshelby, Proc. Roy. Soc., 1957, (A241): 376~380.

[16] M. Taya, S . Hayashi, A. S . Kobayashi, et al., J. Am. Ceram. Soc. 1990 (73): 1382-1388.

[17] R. A. Cutler and A. V. Virkar, J. Mater. Sci., 1985(20): 3557-3573.